A Quantitative Approach to nth-Order Nonlinear Fuzzy Integro-Differential Equation

In recent decades, both the fuzzy differential and fuzzy integral equations have attracted the researcher because the fuzzy operators produce appropriate predictions of problems in an uncertain environment. In this paper, we use fuzzy concepts to study n th -order nonlinear integro-differential equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2022, Vol.8 (3)
Hauptverfasser: Ul Haq, Mansoor, Ullah, Aman, Ahmad, Shabir, Akgül, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title International journal of applied and computational mathematics
container_volume 8
creator Ul Haq, Mansoor
Ullah, Aman
Ahmad, Shabir
Akgül, Ali
description In recent decades, both the fuzzy differential and fuzzy integral equations have attracted the researcher because the fuzzy operators produce appropriate predictions of problems in an uncertain environment. In this paper, we use fuzzy concepts to study n th -order nonlinear integro-differential equations. For the proposed problem, through the modified fuzzy Laplace transform method, we derive the general procedure of the solution. To demonstrate the accuracy and appropriateness of the method, we present some numerical problems. We also provide graphical representation by the use of Matlab 2017 to compare the exact and approximate solution. We solve different problems having second-order, fifth-order, and a system of nonlinear fuzzy integro-differential equations through the developed scheme. We simulate the numerical results via 2D and 3D graphs for the different values of uncertainty. In the end, we provide the discussion and concluding remarks of the article.
doi_str_mv 10.1007/s40819-022-01293-6
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2646969915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646969915</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1426-1d230d2f555ed5382bcd89677b9a2cc10bfbdf68e3a3a614054a620ec724e44c3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOOb-gFcBr6Mnn20ux9x0MByKXoe0TbeOkXZpKrhfb7SCV-e9eM57Dg9CtxTuKUD20AvIqSbAGAHKNCfqAk0Y1ZrITKvLlLlImQK_RrO-PwAAoyIDlk_Q2xy_DtbHJtrYfDo877rQ2nKPY4t93JNtqFzAL60_Nt7ZgFfD-fyF1z66XWjJY1PXLri0bo94eRpSR-tv0FVtj72b_c0p-lgt3xfPZLN9Wi_mG9JRwRShFeNQsVpK6SrJc1aUVa5VlhXasrKkUNRFVavcccutogKksIqBKzMmnBAln6K7sTd9fBpcH82hHYJPJw1TQmmlNZWJ4iPVd6HxOxf-KQrmx58Z_Znkz_z6M4p_A8p-YsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646969915</pqid></control><display><type>article</type><title>A Quantitative Approach to nth-Order Nonlinear Fuzzy Integro-Differential Equation</title><source>SpringerNature Complete Journals</source><creator>Ul Haq, Mansoor ; Ullah, Aman ; Ahmad, Shabir ; Akgül, Ali</creator><creatorcontrib>Ul Haq, Mansoor ; Ullah, Aman ; Ahmad, Shabir ; Akgül, Ali</creatorcontrib><description>In recent decades, both the fuzzy differential and fuzzy integral equations have attracted the researcher because the fuzzy operators produce appropriate predictions of problems in an uncertain environment. In this paper, we use fuzzy concepts to study n th -order nonlinear integro-differential equations. For the proposed problem, through the modified fuzzy Laplace transform method, we derive the general procedure of the solution. To demonstrate the accuracy and appropriateness of the method, we present some numerical problems. We also provide graphical representation by the use of Matlab 2017 to compare the exact and approximate solution. We solve different problems having second-order, fifth-order, and a system of nonlinear fuzzy integro-differential equations through the developed scheme. We simulate the numerical results via 2D and 3D graphs for the different values of uncertainty. In the end, we provide the discussion and concluding remarks of the article.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-022-01293-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Differential equations ; Graphical representations ; Integral equations ; Laplace transforms ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Operators (mathematics) ; Original Paper ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2022, Vol.8 (3)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-022-01293-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-022-01293-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ul Haq, Mansoor</creatorcontrib><creatorcontrib>Ullah, Aman</creatorcontrib><creatorcontrib>Ahmad, Shabir</creatorcontrib><creatorcontrib>Akgül, Ali</creatorcontrib><title>A Quantitative Approach to nth-Order Nonlinear Fuzzy Integro-Differential Equation</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In recent decades, both the fuzzy differential and fuzzy integral equations have attracted the researcher because the fuzzy operators produce appropriate predictions of problems in an uncertain environment. In this paper, we use fuzzy concepts to study n th -order nonlinear integro-differential equations. For the proposed problem, through the modified fuzzy Laplace transform method, we derive the general procedure of the solution. To demonstrate the accuracy and appropriateness of the method, we present some numerical problems. We also provide graphical representation by the use of Matlab 2017 to compare the exact and approximate solution. We solve different problems having second-order, fifth-order, and a system of nonlinear fuzzy integro-differential equations through the developed scheme. We simulate the numerical results via 2D and 3D graphs for the different values of uncertainty. In the end, we provide the discussion and concluding remarks of the article.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Differential equations</subject><subject>Graphical representations</subject><subject>Integral equations</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkF1LwzAUhoMoOOb-gFcBr6Mnn20ux9x0MByKXoe0TbeOkXZpKrhfb7SCV-e9eM57Dg9CtxTuKUD20AvIqSbAGAHKNCfqAk0Y1ZrITKvLlLlImQK_RrO-PwAAoyIDlk_Q2xy_DtbHJtrYfDo877rQ2nKPY4t93JNtqFzAL60_Nt7ZgFfD-fyF1z66XWjJY1PXLri0bo94eRpSR-tv0FVtj72b_c0p-lgt3xfPZLN9Wi_mG9JRwRShFeNQsVpK6SrJc1aUVa5VlhXasrKkUNRFVavcccutogKksIqBKzMmnBAln6K7sTd9fBpcH82hHYJPJw1TQmmlNZWJ4iPVd6HxOxf-KQrmx58Z_Znkz_z6M4p_A8p-YsY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ul Haq, Mansoor</creator><creator>Ullah, Aman</creator><creator>Ahmad, Shabir</creator><creator>Akgül, Ali</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2022</creationdate><title>A Quantitative Approach to nth-Order Nonlinear Fuzzy Integro-Differential Equation</title><author>Ul Haq, Mansoor ; Ullah, Aman ; Ahmad, Shabir ; Akgül, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1426-1d230d2f555ed5382bcd89677b9a2cc10bfbdf68e3a3a614054a620ec724e44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Differential equations</topic><topic>Graphical representations</topic><topic>Integral equations</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ul Haq, Mansoor</creatorcontrib><creatorcontrib>Ullah, Aman</creatorcontrib><creatorcontrib>Ahmad, Shabir</creatorcontrib><creatorcontrib>Akgül, Ali</creatorcontrib><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ul Haq, Mansoor</au><au>Ullah, Aman</au><au>Ahmad, Shabir</au><au>Akgül, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantitative Approach to nth-Order Nonlinear Fuzzy Integro-Differential Equation</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2022</date><risdate>2022</risdate><volume>8</volume><issue>3</issue><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In recent decades, both the fuzzy differential and fuzzy integral equations have attracted the researcher because the fuzzy operators produce appropriate predictions of problems in an uncertain environment. In this paper, we use fuzzy concepts to study n th -order nonlinear integro-differential equations. For the proposed problem, through the modified fuzzy Laplace transform method, we derive the general procedure of the solution. To demonstrate the accuracy and appropriateness of the method, we present some numerical problems. We also provide graphical representation by the use of Matlab 2017 to compare the exact and approximate solution. We solve different problems having second-order, fifth-order, and a system of nonlinear fuzzy integro-differential equations through the developed scheme. We simulate the numerical results via 2D and 3D graphs for the different values of uncertainty. In the end, we provide the discussion and concluding remarks of the article.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-022-01293-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2022, Vol.8 (3)
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2646969915
source SpringerNature Complete Journals
subjects Applications of Mathematics
Applied mathematics
Computational mathematics
Computational Science and Engineering
Differential equations
Graphical representations
Integral equations
Laplace transforms
Mathematical analysis
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Operators (mathematics)
Original Paper
Theoretical
title A Quantitative Approach to nth-Order Nonlinear Fuzzy Integro-Differential Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantitative%20Approach%20to%20nth-Order%20Nonlinear%20Fuzzy%20Integro-Differential%20Equation&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Ul%20Haq,%20Mansoor&rft.date=2022&rft.volume=8&rft.issue=3&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-022-01293-6&rft_dat=%3Cproquest_sprin%3E2646969915%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646969915&rft_id=info:pmid/&rfr_iscdi=true