A look under the tunnelling barrier via attosecond-gated interferometry
Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast elect...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2022-04, Vol.16 (4), p.304-310 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | 4 |
container_start_page | 304 |
container_title | Nature photonics |
container_volume | 16 |
creator | Kneller, Omer Azoury, Doron Federman, Yotam Krüger, Michael Uzan, Ayelet J. Orenstein, Gal Bruner, Barry D. Smirnova, Olga Patchkovskii, Serguei Ivanov, Misha Dudovich, Nirit |
description | Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems.
Attosecond-gated interferometry is developed by combining sub-cycle temporal gating and extreme-ultraviolet interferometry. By measuring the electron’s relative phase and amplitude under a tunnelling barrier, the quantum nature of the electronic wavepacket is identified. |
doi_str_mv | 10.1038/s41566-022-00955-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646839053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646839053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b1081fa2f8fac2b8beb2db42a8f086c6e30c3732107bd373783751ccfedc1a763</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTb4J4mdY1VBi1SJC5wtx1mXlNQutoPUt8cQBDdOO1rNzGo_hK4puaWEy7tY0qquMWEME9JUFRYnaEZF2eBSNvz0V8vqHF3EuCOk4g1jM7RaFIP3b8XoOghFeoUijc7BMPRuW7Q6hD6vP3pd6JR8BONdh7c6QVf0LkGwEPweUjheojOrhwhXP3OOXh7un5drvHlaPS4XG2w4bRJuKZHUamal1Ya1soWWdW3JtLRE1qYGTgwXnFEi2i4LIbmoqDEWOkO1qPkc3Uy9h-DfR4hJ7fwYXD6pWF3Wkjf5s-xik8sEH2MAqw6h3-twVJSoL2BqAqYyMPUNTIkc4lMoZrPbQvir_if1CWRTbsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646839053</pqid></control><display><type>article</type><title>A look under the tunnelling barrier via attosecond-gated interferometry</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kneller, Omer ; Azoury, Doron ; Federman, Yotam ; Krüger, Michael ; Uzan, Ayelet J. ; Orenstein, Gal ; Bruner, Barry D. ; Smirnova, Olga ; Patchkovskii, Serguei ; Ivanov, Misha ; Dudovich, Nirit</creator><creatorcontrib>Kneller, Omer ; Azoury, Doron ; Federman, Yotam ; Krüger, Michael ; Uzan, Ayelet J. ; Orenstein, Gal ; Bruner, Barry D. ; Smirnova, Olga ; Patchkovskii, Serguei ; Ivanov, Misha ; Dudovich, Nirit</creatorcontrib><description>Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems.
Attosecond-gated interferometry is developed by combining sub-cycle temporal gating and extreme-ultraviolet interferometry. By measuring the electron’s relative phase and amplitude under a tunnelling barrier, the quantum nature of the electronic wavepacket is identified.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-022-00955-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/2796 ; 639/766/400/3923 ; Applied and Technical Physics ; Electrons ; Evolution ; Gating ; Interferometry ; Optics ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum Physics ; Wave functions ; Wave packets</subject><ispartof>Nature photonics, 2022-04, Vol.16 (4), p.304-310</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b1081fa2f8fac2b8beb2db42a8f086c6e30c3732107bd373783751ccfedc1a763</citedby><cites>FETCH-LOGICAL-c319t-b1081fa2f8fac2b8beb2db42a8f086c6e30c3732107bd373783751ccfedc1a763</cites><orcidid>0000-0002-8817-2469 ; 0000-0002-7746-5733 ; 0000-0002-6188-9179 ; 0000-0002-3817-6832 ; 0000-0003-4996-4743 ; 0000-0002-2292-6918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-022-00955-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-022-00955-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kneller, Omer</creatorcontrib><creatorcontrib>Azoury, Doron</creatorcontrib><creatorcontrib>Federman, Yotam</creatorcontrib><creatorcontrib>Krüger, Michael</creatorcontrib><creatorcontrib>Uzan, Ayelet J.</creatorcontrib><creatorcontrib>Orenstein, Gal</creatorcontrib><creatorcontrib>Bruner, Barry D.</creatorcontrib><creatorcontrib>Smirnova, Olga</creatorcontrib><creatorcontrib>Patchkovskii, Serguei</creatorcontrib><creatorcontrib>Ivanov, Misha</creatorcontrib><creatorcontrib>Dudovich, Nirit</creatorcontrib><title>A look under the tunnelling barrier via attosecond-gated interferometry</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems.
Attosecond-gated interferometry is developed by combining sub-cycle temporal gating and extreme-ultraviolet interferometry. By measuring the electron’s relative phase and amplitude under a tunnelling barrier, the quantum nature of the electronic wavepacket is identified.</description><subject>639/766/36/2796</subject><subject>639/766/400/3923</subject><subject>Applied and Technical Physics</subject><subject>Electrons</subject><subject>Evolution</subject><subject>Gating</subject><subject>Interferometry</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Wave functions</subject><subject>Wave packets</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwicTb4J4mdY1VBi1SJC5wtx1mXlNQutoPUt8cQBDdOO1rNzGo_hK4puaWEy7tY0qquMWEME9JUFRYnaEZF2eBSNvz0V8vqHF3EuCOk4g1jM7RaFIP3b8XoOghFeoUijc7BMPRuW7Q6hD6vP3pd6JR8BONdh7c6QVf0LkGwEPweUjheojOrhwhXP3OOXh7un5drvHlaPS4XG2w4bRJuKZHUamal1Ya1soWWdW3JtLRE1qYGTgwXnFEi2i4LIbmoqDEWOkO1qPkc3Uy9h-DfR4hJ7fwYXD6pWF3Wkjf5s-xik8sEH2MAqw6h3-twVJSoL2BqAqYyMPUNTIkc4lMoZrPbQvir_if1CWRTbsY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Kneller, Omer</creator><creator>Azoury, Doron</creator><creator>Federman, Yotam</creator><creator>Krüger, Michael</creator><creator>Uzan, Ayelet J.</creator><creator>Orenstein, Gal</creator><creator>Bruner, Barry D.</creator><creator>Smirnova, Olga</creator><creator>Patchkovskii, Serguei</creator><creator>Ivanov, Misha</creator><creator>Dudovich, Nirit</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8817-2469</orcidid><orcidid>https://orcid.org/0000-0002-7746-5733</orcidid><orcidid>https://orcid.org/0000-0002-6188-9179</orcidid><orcidid>https://orcid.org/0000-0002-3817-6832</orcidid><orcidid>https://orcid.org/0000-0003-4996-4743</orcidid><orcidid>https://orcid.org/0000-0002-2292-6918</orcidid></search><sort><creationdate>20220401</creationdate><title>A look under the tunnelling barrier via attosecond-gated interferometry</title><author>Kneller, Omer ; Azoury, Doron ; Federman, Yotam ; Krüger, Michael ; Uzan, Ayelet J. ; Orenstein, Gal ; Bruner, Barry D. ; Smirnova, Olga ; Patchkovskii, Serguei ; Ivanov, Misha ; Dudovich, Nirit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b1081fa2f8fac2b8beb2db42a8f086c6e30c3732107bd373783751ccfedc1a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/36/2796</topic><topic>639/766/400/3923</topic><topic>Applied and Technical Physics</topic><topic>Electrons</topic><topic>Evolution</topic><topic>Gating</topic><topic>Interferometry</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Wave functions</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kneller, Omer</creatorcontrib><creatorcontrib>Azoury, Doron</creatorcontrib><creatorcontrib>Federman, Yotam</creatorcontrib><creatorcontrib>Krüger, Michael</creatorcontrib><creatorcontrib>Uzan, Ayelet J.</creatorcontrib><creatorcontrib>Orenstein, Gal</creatorcontrib><creatorcontrib>Bruner, Barry D.</creatorcontrib><creatorcontrib>Smirnova, Olga</creatorcontrib><creatorcontrib>Patchkovskii, Serguei</creatorcontrib><creatorcontrib>Ivanov, Misha</creatorcontrib><creatorcontrib>Dudovich, Nirit</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kneller, Omer</au><au>Azoury, Doron</au><au>Federman, Yotam</au><au>Krüger, Michael</au><au>Uzan, Ayelet J.</au><au>Orenstein, Gal</au><au>Bruner, Barry D.</au><au>Smirnova, Olga</au><au>Patchkovskii, Serguei</au><au>Ivanov, Misha</au><au>Dudovich, Nirit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A look under the tunnelling barrier via attosecond-gated interferometry</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>304</spage><epage>310</epage><pages>304-310</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems.
Attosecond-gated interferometry is developed by combining sub-cycle temporal gating and extreme-ultraviolet interferometry. By measuring the electron’s relative phase and amplitude under a tunnelling barrier, the quantum nature of the electronic wavepacket is identified.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-022-00955-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8817-2469</orcidid><orcidid>https://orcid.org/0000-0002-7746-5733</orcidid><orcidid>https://orcid.org/0000-0002-6188-9179</orcidid><orcidid>https://orcid.org/0000-0002-3817-6832</orcidid><orcidid>https://orcid.org/0000-0003-4996-4743</orcidid><orcidid>https://orcid.org/0000-0002-2292-6918</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2022-04, Vol.16 (4), p.304-310 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2646839053 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/36/2796 639/766/400/3923 Applied and Technical Physics Electrons Evolution Gating Interferometry Optics Physics Physics and Astronomy Quantum mechanics Quantum Physics Wave functions Wave packets |
title | A look under the tunnelling barrier via attosecond-gated interferometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20look%20under%20the%20tunnelling%20barrier%20via%20attosecond-gated%20interferometry&rft.jtitle=Nature%20photonics&rft.au=Kneller,%20Omer&rft.date=2022-04-01&rft.volume=16&rft.issue=4&rft.spage=304&rft.epage=310&rft.pages=304-310&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-022-00955-7&rft_dat=%3Cproquest_cross%3E2646839053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646839053&rft_id=info:pmid/&rfr_iscdi=true |