A look under the tunnelling barrier via attosecond-gated interferometry

Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2022-04, Vol.16 (4), p.304-310
Hauptverfasser: Kneller, Omer, Azoury, Doron, Federman, Yotam, Krüger, Michael, Uzan, Ayelet J., Orenstein, Gal, Bruner, Barry D., Smirnova, Olga, Patchkovskii, Serguei, Ivanov, Misha, Dudovich, Nirit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 4
container_start_page 304
container_title Nature photonics
container_volume 16
creator Kneller, Omer
Azoury, Doron
Federman, Yotam
Krüger, Michael
Uzan, Ayelet J.
Orenstein, Gal
Bruner, Barry D.
Smirnova, Olga
Patchkovskii, Serguei
Ivanov, Misha
Dudovich, Nirit
description Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems. Attosecond-gated interferometry is developed by combining sub-cycle temporal gating and extreme-ultraviolet interferometry. By measuring the electron’s relative phase and amplitude under a tunnelling barrier, the quantum nature of the electronic wavepacket is identified.
doi_str_mv 10.1038/s41566-022-00955-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646839053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646839053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b1081fa2f8fac2b8beb2db42a8f086c6e30c3732107bd373783751ccfedc1a763</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTb4J4mdY1VBi1SJC5wtx1mXlNQutoPUt8cQBDdOO1rNzGo_hK4puaWEy7tY0qquMWEME9JUFRYnaEZF2eBSNvz0V8vqHF3EuCOk4g1jM7RaFIP3b8XoOghFeoUijc7BMPRuW7Q6hD6vP3pd6JR8BONdh7c6QVf0LkGwEPweUjheojOrhwhXP3OOXh7un5drvHlaPS4XG2w4bRJuKZHUamal1Ya1soWWdW3JtLRE1qYGTgwXnFEi2i4LIbmoqDEWOkO1qPkc3Uy9h-DfR4hJ7fwYXD6pWF3Wkjf5s-xik8sEH2MAqw6h3-twVJSoL2BqAqYyMPUNTIkc4lMoZrPbQvir_if1CWRTbsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646839053</pqid></control><display><type>article</type><title>A look under the tunnelling barrier via attosecond-gated interferometry</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kneller, Omer ; Azoury, Doron ; Federman, Yotam ; Krüger, Michael ; Uzan, Ayelet J. ; Orenstein, Gal ; Bruner, Barry D. ; Smirnova, Olga ; Patchkovskii, Serguei ; Ivanov, Misha ; Dudovich, Nirit</creator><creatorcontrib>Kneller, Omer ; Azoury, Doron ; Federman, Yotam ; Krüger, Michael ; Uzan, Ayelet J. ; Orenstein, Gal ; Bruner, Barry D. ; Smirnova, Olga ; Patchkovskii, Serguei ; Ivanov, Misha ; Dudovich, Nirit</creatorcontrib><description>Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems. Attosecond-gated interferometry is developed by combining sub-cycle temporal gating and extreme-ultraviolet interferometry. By measuring the electron’s relative phase and amplitude under a tunnelling barrier, the quantum nature of the electronic wavepacket is identified.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-022-00955-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/2796 ; 639/766/400/3923 ; Applied and Technical Physics ; Electrons ; Evolution ; Gating ; Interferometry ; Optics ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum Physics ; Wave functions ; Wave packets</subject><ispartof>Nature photonics, 2022-04, Vol.16 (4), p.304-310</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b1081fa2f8fac2b8beb2db42a8f086c6e30c3732107bd373783751ccfedc1a763</citedby><cites>FETCH-LOGICAL-c319t-b1081fa2f8fac2b8beb2db42a8f086c6e30c3732107bd373783751ccfedc1a763</cites><orcidid>0000-0002-8817-2469 ; 0000-0002-7746-5733 ; 0000-0002-6188-9179 ; 0000-0002-3817-6832 ; 0000-0003-4996-4743 ; 0000-0002-2292-6918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-022-00955-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-022-00955-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kneller, Omer</creatorcontrib><creatorcontrib>Azoury, Doron</creatorcontrib><creatorcontrib>Federman, Yotam</creatorcontrib><creatorcontrib>Krüger, Michael</creatorcontrib><creatorcontrib>Uzan, Ayelet J.</creatorcontrib><creatorcontrib>Orenstein, Gal</creatorcontrib><creatorcontrib>Bruner, Barry D.</creatorcontrib><creatorcontrib>Smirnova, Olga</creatorcontrib><creatorcontrib>Patchkovskii, Serguei</creatorcontrib><creatorcontrib>Ivanov, Misha</creatorcontrib><creatorcontrib>Dudovich, Nirit</creatorcontrib><title>A look under the tunnelling barrier via attosecond-gated interferometry</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems. Attosecond-gated interferometry is developed by combining sub-cycle temporal gating and extreme-ultraviolet interferometry. By measuring the electron’s relative phase and amplitude under a tunnelling barrier, the quantum nature of the electronic wavepacket is identified.</description><subject>639/766/36/2796</subject><subject>639/766/400/3923</subject><subject>Applied and Technical Physics</subject><subject>Electrons</subject><subject>Evolution</subject><subject>Gating</subject><subject>Interferometry</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Wave functions</subject><subject>Wave packets</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwicTb4J4mdY1VBi1SJC5wtx1mXlNQutoPUt8cQBDdOO1rNzGo_hK4puaWEy7tY0qquMWEME9JUFRYnaEZF2eBSNvz0V8vqHF3EuCOk4g1jM7RaFIP3b8XoOghFeoUijc7BMPRuW7Q6hD6vP3pd6JR8BONdh7c6QVf0LkGwEPweUjheojOrhwhXP3OOXh7un5drvHlaPS4XG2w4bRJuKZHUamal1Ya1soWWdW3JtLRE1qYGTgwXnFEi2i4LIbmoqDEWOkO1qPkc3Uy9h-DfR4hJ7fwYXD6pWF3Wkjf5s-xik8sEH2MAqw6h3-twVJSoL2BqAqYyMPUNTIkc4lMoZrPbQvir_if1CWRTbsY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Kneller, Omer</creator><creator>Azoury, Doron</creator><creator>Federman, Yotam</creator><creator>Krüger, Michael</creator><creator>Uzan, Ayelet J.</creator><creator>Orenstein, Gal</creator><creator>Bruner, Barry D.</creator><creator>Smirnova, Olga</creator><creator>Patchkovskii, Serguei</creator><creator>Ivanov, Misha</creator><creator>Dudovich, Nirit</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8817-2469</orcidid><orcidid>https://orcid.org/0000-0002-7746-5733</orcidid><orcidid>https://orcid.org/0000-0002-6188-9179</orcidid><orcidid>https://orcid.org/0000-0002-3817-6832</orcidid><orcidid>https://orcid.org/0000-0003-4996-4743</orcidid><orcidid>https://orcid.org/0000-0002-2292-6918</orcidid></search><sort><creationdate>20220401</creationdate><title>A look under the tunnelling barrier via attosecond-gated interferometry</title><author>Kneller, Omer ; Azoury, Doron ; Federman, Yotam ; Krüger, Michael ; Uzan, Ayelet J. ; Orenstein, Gal ; Bruner, Barry D. ; Smirnova, Olga ; Patchkovskii, Serguei ; Ivanov, Misha ; Dudovich, Nirit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b1081fa2f8fac2b8beb2db42a8f086c6e30c3732107bd373783751ccfedc1a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/36/2796</topic><topic>639/766/400/3923</topic><topic>Applied and Technical Physics</topic><topic>Electrons</topic><topic>Evolution</topic><topic>Gating</topic><topic>Interferometry</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Wave functions</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kneller, Omer</creatorcontrib><creatorcontrib>Azoury, Doron</creatorcontrib><creatorcontrib>Federman, Yotam</creatorcontrib><creatorcontrib>Krüger, Michael</creatorcontrib><creatorcontrib>Uzan, Ayelet J.</creatorcontrib><creatorcontrib>Orenstein, Gal</creatorcontrib><creatorcontrib>Bruner, Barry D.</creatorcontrib><creatorcontrib>Smirnova, Olga</creatorcontrib><creatorcontrib>Patchkovskii, Serguei</creatorcontrib><creatorcontrib>Ivanov, Misha</creatorcontrib><creatorcontrib>Dudovich, Nirit</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kneller, Omer</au><au>Azoury, Doron</au><au>Federman, Yotam</au><au>Krüger, Michael</au><au>Uzan, Ayelet J.</au><au>Orenstein, Gal</au><au>Bruner, Barry D.</au><au>Smirnova, Olga</au><au>Patchkovskii, Serguei</au><au>Ivanov, Misha</au><au>Dudovich, Nirit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A look under the tunnelling barrier via attosecond-gated interferometry</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>304</spage><epage>310</epage><pages>304-310</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems. Attosecond-gated interferometry is developed by combining sub-cycle temporal gating and extreme-ultraviolet interferometry. By measuring the electron’s relative phase and amplitude under a tunnelling barrier, the quantum nature of the electronic wavepacket is identified.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-022-00955-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8817-2469</orcidid><orcidid>https://orcid.org/0000-0002-7746-5733</orcidid><orcidid>https://orcid.org/0000-0002-6188-9179</orcidid><orcidid>https://orcid.org/0000-0002-3817-6832</orcidid><orcidid>https://orcid.org/0000-0003-4996-4743</orcidid><orcidid>https://orcid.org/0000-0002-2292-6918</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2022-04, Vol.16 (4), p.304-310
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2646839053
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/766/36/2796
639/766/400/3923
Applied and Technical Physics
Electrons
Evolution
Gating
Interferometry
Optics
Physics
Physics and Astronomy
Quantum mechanics
Quantum Physics
Wave functions
Wave packets
title A look under the tunnelling barrier via attosecond-gated interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20look%20under%20the%20tunnelling%20barrier%20via%20attosecond-gated%20interferometry&rft.jtitle=Nature%20photonics&rft.au=Kneller,%20Omer&rft.date=2022-04-01&rft.volume=16&rft.issue=4&rft.spage=304&rft.epage=310&rft.pages=304-310&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-022-00955-7&rft_dat=%3Cproquest_cross%3E2646839053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646839053&rft_id=info:pmid/&rfr_iscdi=true