The LISA DFACS: Model Predictive Control design for the test mass release phase

This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2022-04, Vol.193, p.731-743
Hauptverfasser: Vidano, S., Novara, C., Pagone, M., Grzymisch, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 743
container_issue
container_start_page 731
container_title Acta astronautica
container_volume 193
creator Vidano, S.
Novara, C.
Pagone, M.
Grzymisch, J.
description This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance between free falling test masses by means of a laser interferometer. Each test mass is a cubic body located inside an electrostatic suspension that is initially locked by a clamp mechanism. Once the plungers are retracted, the test masses are released with high initial offsets and velocities. To detect the gravitational waves, each test mass must be accurately positioned at the cage centre and its attitude must be aligned with the local cage frame. However, the low actuation authority of the electrostatic suspension along with the critical initial conditions, make the attitude and translation control a difficult task. MPC is a suitable technique for this application because it can systematically account for command saturations, state constraints and can provide optimal (or sub-optimal) control inputs by solving an optimization problem online. In this paper, an MPC controller is designed and validated by means of Monte Carlo simulations, achieving satisfactory results. •Model Predictive Control is a suitable method for the test mass release control problem of the LISA mission.•Model Predictive Control can deal with the low actuation authority of the electrostatic suspensions.•Model Predictive Control can deal with the state constraints of the test mass inside the cage.•Model Predictive Control can manage the operating mode transitions from Wide Range to High Resolution.
doi_str_mv 10.1016/j.actaastro.2021.12.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646756082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576521007025</els_id><sourcerecordid>2646756082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b4e97a244796b7c75e88146f75eb1fa1c092b8eac71f01bd7fe3e6abcab3aa353</originalsourceid><addsrcrecordid>eNqFkEFPwzAMhSMEEmPwG4jEuSVJ26TlVhUGk4aGtHGO0tRlrbpmJNmk_XsyDXHlYvvw3rP9IXRPSUwJ5Y99rLRXynlrYkYYjSmLScYv0ITmoogYScglmhBSpFEmeHaNbpzrCSGC5cUELdcbwIv5qsTPs7JaPeF308CAPyw0nfbdAXBlxhA94AZc9zXi1ljsg8eD83irnMMWBlAO8G4T6i26atXg4O63T9Hn7GVdvUWL5eu8KheRTtLER3UKhVAsTUXBa6FFBnlOU96GoaatopoUrM5BaUFbQutGtJAAV7VWdaJUkiVT9HDO3VnzvQ-3yN7s7RhWSsZTLjJOchZU4qzS1jhnoZU7222VPUpK5Ime7OUfPXmiJymTgV5wlmcnhCcOHVjpdAejDlgsaC8b0_2b8QO-CXwf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646756082</pqid></control><display><type>article</type><title>The LISA DFACS: Model Predictive Control design for the test mass release phase</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vidano, S. ; Novara, C. ; Pagone, M. ; Grzymisch, J.</creator><creatorcontrib>Vidano, S. ; Novara, C. ; Pagone, M. ; Grzymisch, J.</creatorcontrib><description>This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance between free falling test masses by means of a laser interferometer. Each test mass is a cubic body located inside an electrostatic suspension that is initially locked by a clamp mechanism. Once the plungers are retracted, the test masses are released with high initial offsets and velocities. To detect the gravitational waves, each test mass must be accurately positioned at the cage centre and its attitude must be aligned with the local cage frame. However, the low actuation authority of the electrostatic suspension along with the critical initial conditions, make the attitude and translation control a difficult task. MPC is a suitable technique for this application because it can systematically account for command saturations, state constraints and can provide optimal (or sub-optimal) control inputs by solving an optimization problem online. In this paper, an MPC controller is designed and validated by means of Monte Carlo simulations, achieving satisfactory results. •Model Predictive Control is a suitable method for the test mass release control problem of the LISA mission.•Model Predictive Control can deal with the low actuation authority of the electrostatic suspensions.•Model Predictive Control can deal with the state constraints of the test mass inside the cage.•Model Predictive Control can manage the operating mode transitions from Wide Range to High Resolution.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2021.12.056</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Actuation ; Attitudes ; Cages ; Control ; Control systems design ; Free fall ; GNC ; Gravitational waves ; Initial conditions ; Interferometers ; LISA ; LISA (antenna) ; MPC ; Optimization ; Plungers ; Predictive control ; Space missions ; Spacecraft</subject><ispartof>Acta astronautica, 2022-04, Vol.193, p.731-743</ispartof><rights>2022 IAA</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b4e97a244796b7c75e88146f75eb1fa1c092b8eac71f01bd7fe3e6abcab3aa353</citedby><cites>FETCH-LOGICAL-c343t-b4e97a244796b7c75e88146f75eb1fa1c092b8eac71f01bd7fe3e6abcab3aa353</cites><orcidid>0000-0002-5162-8872 ; 0000-0003-3680-1152 ; 0000-0002-6889-6216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2021.12.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Vidano, S.</creatorcontrib><creatorcontrib>Novara, C.</creatorcontrib><creatorcontrib>Pagone, M.</creatorcontrib><creatorcontrib>Grzymisch, J.</creatorcontrib><title>The LISA DFACS: Model Predictive Control design for the test mass release phase</title><title>Acta astronautica</title><description>This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance between free falling test masses by means of a laser interferometer. Each test mass is a cubic body located inside an electrostatic suspension that is initially locked by a clamp mechanism. Once the plungers are retracted, the test masses are released with high initial offsets and velocities. To detect the gravitational waves, each test mass must be accurately positioned at the cage centre and its attitude must be aligned with the local cage frame. However, the low actuation authority of the electrostatic suspension along with the critical initial conditions, make the attitude and translation control a difficult task. MPC is a suitable technique for this application because it can systematically account for command saturations, state constraints and can provide optimal (or sub-optimal) control inputs by solving an optimization problem online. In this paper, an MPC controller is designed and validated by means of Monte Carlo simulations, achieving satisfactory results. •Model Predictive Control is a suitable method for the test mass release control problem of the LISA mission.•Model Predictive Control can deal with the low actuation authority of the electrostatic suspensions.•Model Predictive Control can deal with the state constraints of the test mass inside the cage.•Model Predictive Control can manage the operating mode transitions from Wide Range to High Resolution.</description><subject>Actuation</subject><subject>Attitudes</subject><subject>Cages</subject><subject>Control</subject><subject>Control systems design</subject><subject>Free fall</subject><subject>GNC</subject><subject>Gravitational waves</subject><subject>Initial conditions</subject><subject>Interferometers</subject><subject>LISA</subject><subject>LISA (antenna)</subject><subject>MPC</subject><subject>Optimization</subject><subject>Plungers</subject><subject>Predictive control</subject><subject>Space missions</subject><subject>Spacecraft</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwzAMhSMEEmPwG4jEuSVJ26TlVhUGk4aGtHGO0tRlrbpmJNmk_XsyDXHlYvvw3rP9IXRPSUwJ5Y99rLRXynlrYkYYjSmLScYv0ITmoogYScglmhBSpFEmeHaNbpzrCSGC5cUELdcbwIv5qsTPs7JaPeF308CAPyw0nfbdAXBlxhA94AZc9zXi1ljsg8eD83irnMMWBlAO8G4T6i26atXg4O63T9Hn7GVdvUWL5eu8KheRTtLER3UKhVAsTUXBa6FFBnlOU96GoaatopoUrM5BaUFbQutGtJAAV7VWdaJUkiVT9HDO3VnzvQ-3yN7s7RhWSsZTLjJOchZU4qzS1jhnoZU7222VPUpK5Ime7OUfPXmiJymTgV5wlmcnhCcOHVjpdAejDlgsaC8b0_2b8QO-CXwf</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Vidano, S.</creator><creator>Novara, C.</creator><creator>Pagone, M.</creator><creator>Grzymisch, J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5162-8872</orcidid><orcidid>https://orcid.org/0000-0003-3680-1152</orcidid><orcidid>https://orcid.org/0000-0002-6889-6216</orcidid></search><sort><creationdate>202204</creationdate><title>The LISA DFACS: Model Predictive Control design for the test mass release phase</title><author>Vidano, S. ; Novara, C. ; Pagone, M. ; Grzymisch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b4e97a244796b7c75e88146f75eb1fa1c092b8eac71f01bd7fe3e6abcab3aa353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Attitudes</topic><topic>Cages</topic><topic>Control</topic><topic>Control systems design</topic><topic>Free fall</topic><topic>GNC</topic><topic>Gravitational waves</topic><topic>Initial conditions</topic><topic>Interferometers</topic><topic>LISA</topic><topic>LISA (antenna)</topic><topic>MPC</topic><topic>Optimization</topic><topic>Plungers</topic><topic>Predictive control</topic><topic>Space missions</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidano, S.</creatorcontrib><creatorcontrib>Novara, C.</creatorcontrib><creatorcontrib>Pagone, M.</creatorcontrib><creatorcontrib>Grzymisch, J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidano, S.</au><au>Novara, C.</au><au>Pagone, M.</au><au>Grzymisch, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The LISA DFACS: Model Predictive Control design for the test mass release phase</atitle><jtitle>Acta astronautica</jtitle><date>2022-04</date><risdate>2022</risdate><volume>193</volume><spage>731</spage><epage>743</epage><pages>731-743</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance between free falling test masses by means of a laser interferometer. Each test mass is a cubic body located inside an electrostatic suspension that is initially locked by a clamp mechanism. Once the plungers are retracted, the test masses are released with high initial offsets and velocities. To detect the gravitational waves, each test mass must be accurately positioned at the cage centre and its attitude must be aligned with the local cage frame. However, the low actuation authority of the electrostatic suspension along with the critical initial conditions, make the attitude and translation control a difficult task. MPC is a suitable technique for this application because it can systematically account for command saturations, state constraints and can provide optimal (or sub-optimal) control inputs by solving an optimization problem online. In this paper, an MPC controller is designed and validated by means of Monte Carlo simulations, achieving satisfactory results. •Model Predictive Control is a suitable method for the test mass release control problem of the LISA mission.•Model Predictive Control can deal with the low actuation authority of the electrostatic suspensions.•Model Predictive Control can deal with the state constraints of the test mass inside the cage.•Model Predictive Control can manage the operating mode transitions from Wide Range to High Resolution.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2021.12.056</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5162-8872</orcidid><orcidid>https://orcid.org/0000-0003-3680-1152</orcidid><orcidid>https://orcid.org/0000-0002-6889-6216</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2022-04, Vol.193, p.731-743
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2646756082
source ScienceDirect Journals (5 years ago - present)
subjects Actuation
Attitudes
Cages
Control
Control systems design
Free fall
GNC
Gravitational waves
Initial conditions
Interferometers
LISA
LISA (antenna)
MPC
Optimization
Plungers
Predictive control
Space missions
Spacecraft
title The LISA DFACS: Model Predictive Control design for the test mass release phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20LISA%20DFACS:%20Model%20Predictive%20Control%20design%20for%20the%20test%20mass%20release%20phase&rft.jtitle=Acta%20astronautica&rft.au=Vidano,%20S.&rft.date=2022-04&rft.volume=193&rft.spage=731&rft.epage=743&rft.pages=731-743&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2021.12.056&rft_dat=%3Cproquest_cross%3E2646756082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646756082&rft_id=info:pmid/&rft_els_id=S0094576521007025&rfr_iscdi=true