The LISA DFACS: Model Predictive Control design for the test mass release phase
This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance betwee...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2022-04, Vol.193, p.731-743 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 743 |
---|---|
container_issue | |
container_start_page | 731 |
container_title | Acta astronautica |
container_volume | 193 |
creator | Vidano, S. Novara, C. Pagone, M. Grzymisch, J. |
description | This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance between free falling test masses by means of a laser interferometer. Each test mass is a cubic body located inside an electrostatic suspension that is initially locked by a clamp mechanism. Once the plungers are retracted, the test masses are released with high initial offsets and velocities. To detect the gravitational waves, each test mass must be accurately positioned at the cage centre and its attitude must be aligned with the local cage frame. However, the low actuation authority of the electrostatic suspension along with the critical initial conditions, make the attitude and translation control a difficult task. MPC is a suitable technique for this application because it can systematically account for command saturations, state constraints and can provide optimal (or sub-optimal) control inputs by solving an optimization problem online. In this paper, an MPC controller is designed and validated by means of Monte Carlo simulations, achieving satisfactory results.
•Model Predictive Control is a suitable method for the test mass release control problem of the LISA mission.•Model Predictive Control can deal with the low actuation authority of the electrostatic suspensions.•Model Predictive Control can deal with the state constraints of the test mass inside the cage.•Model Predictive Control can manage the operating mode transitions from Wide Range to High Resolution. |
doi_str_mv | 10.1016/j.actaastro.2021.12.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646756082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576521007025</els_id><sourcerecordid>2646756082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b4e97a244796b7c75e88146f75eb1fa1c092b8eac71f01bd7fe3e6abcab3aa353</originalsourceid><addsrcrecordid>eNqFkEFPwzAMhSMEEmPwG4jEuSVJ26TlVhUGk4aGtHGO0tRlrbpmJNmk_XsyDXHlYvvw3rP9IXRPSUwJ5Y99rLRXynlrYkYYjSmLScYv0ITmoogYScglmhBSpFEmeHaNbpzrCSGC5cUELdcbwIv5qsTPs7JaPeF308CAPyw0nfbdAXBlxhA94AZc9zXi1ljsg8eD83irnMMWBlAO8G4T6i26atXg4O63T9Hn7GVdvUWL5eu8KheRTtLER3UKhVAsTUXBa6FFBnlOU96GoaatopoUrM5BaUFbQutGtJAAV7VWdaJUkiVT9HDO3VnzvQ-3yN7s7RhWSsZTLjJOchZU4qzS1jhnoZU7222VPUpK5Ime7OUfPXmiJymTgV5wlmcnhCcOHVjpdAejDlgsaC8b0_2b8QO-CXwf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646756082</pqid></control><display><type>article</type><title>The LISA DFACS: Model Predictive Control design for the test mass release phase</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vidano, S. ; Novara, C. ; Pagone, M. ; Grzymisch, J.</creator><creatorcontrib>Vidano, S. ; Novara, C. ; Pagone, M. ; Grzymisch, J.</creatorcontrib><description>This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance between free falling test masses by means of a laser interferometer. Each test mass is a cubic body located inside an electrostatic suspension that is initially locked by a clamp mechanism. Once the plungers are retracted, the test masses are released with high initial offsets and velocities. To detect the gravitational waves, each test mass must be accurately positioned at the cage centre and its attitude must be aligned with the local cage frame. However, the low actuation authority of the electrostatic suspension along with the critical initial conditions, make the attitude and translation control a difficult task. MPC is a suitable technique for this application because it can systematically account for command saturations, state constraints and can provide optimal (or sub-optimal) control inputs by solving an optimization problem online. In this paper, an MPC controller is designed and validated by means of Monte Carlo simulations, achieving satisfactory results.
•Model Predictive Control is a suitable method for the test mass release control problem of the LISA mission.•Model Predictive Control can deal with the low actuation authority of the electrostatic suspensions.•Model Predictive Control can deal with the state constraints of the test mass inside the cage.•Model Predictive Control can manage the operating mode transitions from Wide Range to High Resolution.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2021.12.056</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Actuation ; Attitudes ; Cages ; Control ; Control systems design ; Free fall ; GNC ; Gravitational waves ; Initial conditions ; Interferometers ; LISA ; LISA (antenna) ; MPC ; Optimization ; Plungers ; Predictive control ; Space missions ; Spacecraft</subject><ispartof>Acta astronautica, 2022-04, Vol.193, p.731-743</ispartof><rights>2022 IAA</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b4e97a244796b7c75e88146f75eb1fa1c092b8eac71f01bd7fe3e6abcab3aa353</citedby><cites>FETCH-LOGICAL-c343t-b4e97a244796b7c75e88146f75eb1fa1c092b8eac71f01bd7fe3e6abcab3aa353</cites><orcidid>0000-0002-5162-8872 ; 0000-0003-3680-1152 ; 0000-0002-6889-6216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2021.12.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Vidano, S.</creatorcontrib><creatorcontrib>Novara, C.</creatorcontrib><creatorcontrib>Pagone, M.</creatorcontrib><creatorcontrib>Grzymisch, J.</creatorcontrib><title>The LISA DFACS: Model Predictive Control design for the test mass release phase</title><title>Acta astronautica</title><description>This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance between free falling test masses by means of a laser interferometer. Each test mass is a cubic body located inside an electrostatic suspension that is initially locked by a clamp mechanism. Once the plungers are retracted, the test masses are released with high initial offsets and velocities. To detect the gravitational waves, each test mass must be accurately positioned at the cage centre and its attitude must be aligned with the local cage frame. However, the low actuation authority of the electrostatic suspension along with the critical initial conditions, make the attitude and translation control a difficult task. MPC is a suitable technique for this application because it can systematically account for command saturations, state constraints and can provide optimal (or sub-optimal) control inputs by solving an optimization problem online. In this paper, an MPC controller is designed and validated by means of Monte Carlo simulations, achieving satisfactory results.
•Model Predictive Control is a suitable method for the test mass release control problem of the LISA mission.•Model Predictive Control can deal with the low actuation authority of the electrostatic suspensions.•Model Predictive Control can deal with the state constraints of the test mass inside the cage.•Model Predictive Control can manage the operating mode transitions from Wide Range to High Resolution.</description><subject>Actuation</subject><subject>Attitudes</subject><subject>Cages</subject><subject>Control</subject><subject>Control systems design</subject><subject>Free fall</subject><subject>GNC</subject><subject>Gravitational waves</subject><subject>Initial conditions</subject><subject>Interferometers</subject><subject>LISA</subject><subject>LISA (antenna)</subject><subject>MPC</subject><subject>Optimization</subject><subject>Plungers</subject><subject>Predictive control</subject><subject>Space missions</subject><subject>Spacecraft</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwzAMhSMEEmPwG4jEuSVJ26TlVhUGk4aGtHGO0tRlrbpmJNmk_XsyDXHlYvvw3rP9IXRPSUwJ5Y99rLRXynlrYkYYjSmLScYv0ITmoogYScglmhBSpFEmeHaNbpzrCSGC5cUELdcbwIv5qsTPs7JaPeF308CAPyw0nfbdAXBlxhA94AZc9zXi1ljsg8eD83irnMMWBlAO8G4T6i26atXg4O63T9Hn7GVdvUWL5eu8KheRTtLER3UKhVAsTUXBa6FFBnlOU96GoaatopoUrM5BaUFbQutGtJAAV7VWdaJUkiVT9HDO3VnzvQ-3yN7s7RhWSsZTLjJOchZU4qzS1jhnoZU7222VPUpK5Ime7OUfPXmiJymTgV5wlmcnhCcOHVjpdAejDlgsaC8b0_2b8QO-CXwf</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Vidano, S.</creator><creator>Novara, C.</creator><creator>Pagone, M.</creator><creator>Grzymisch, J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5162-8872</orcidid><orcidid>https://orcid.org/0000-0003-3680-1152</orcidid><orcidid>https://orcid.org/0000-0002-6889-6216</orcidid></search><sort><creationdate>202204</creationdate><title>The LISA DFACS: Model Predictive Control design for the test mass release phase</title><author>Vidano, S. ; Novara, C. ; Pagone, M. ; Grzymisch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b4e97a244796b7c75e88146f75eb1fa1c092b8eac71f01bd7fe3e6abcab3aa353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Attitudes</topic><topic>Cages</topic><topic>Control</topic><topic>Control systems design</topic><topic>Free fall</topic><topic>GNC</topic><topic>Gravitational waves</topic><topic>Initial conditions</topic><topic>Interferometers</topic><topic>LISA</topic><topic>LISA (antenna)</topic><topic>MPC</topic><topic>Optimization</topic><topic>Plungers</topic><topic>Predictive control</topic><topic>Space missions</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidano, S.</creatorcontrib><creatorcontrib>Novara, C.</creatorcontrib><creatorcontrib>Pagone, M.</creatorcontrib><creatorcontrib>Grzymisch, J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidano, S.</au><au>Novara, C.</au><au>Pagone, M.</au><au>Grzymisch, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The LISA DFACS: Model Predictive Control design for the test mass release phase</atitle><jtitle>Acta astronautica</jtitle><date>2022-04</date><risdate>2022</risdate><volume>193</volume><spage>731</spage><epage>743</epage><pages>731-743</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>This paper presents a Model Predictive Control (MPC) design for the test mass release phase of the LISA space mission. LISA is a gravitational wave observatory consisting of a triangular constellation of three spacecraft. The gravitational waves are detected by measuring the relative distance between free falling test masses by means of a laser interferometer. Each test mass is a cubic body located inside an electrostatic suspension that is initially locked by a clamp mechanism. Once the plungers are retracted, the test masses are released with high initial offsets and velocities. To detect the gravitational waves, each test mass must be accurately positioned at the cage centre and its attitude must be aligned with the local cage frame. However, the low actuation authority of the electrostatic suspension along with the critical initial conditions, make the attitude and translation control a difficult task. MPC is a suitable technique for this application because it can systematically account for command saturations, state constraints and can provide optimal (or sub-optimal) control inputs by solving an optimization problem online. In this paper, an MPC controller is designed and validated by means of Monte Carlo simulations, achieving satisfactory results.
•Model Predictive Control is a suitable method for the test mass release control problem of the LISA mission.•Model Predictive Control can deal with the low actuation authority of the electrostatic suspensions.•Model Predictive Control can deal with the state constraints of the test mass inside the cage.•Model Predictive Control can manage the operating mode transitions from Wide Range to High Resolution.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2021.12.056</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5162-8872</orcidid><orcidid>https://orcid.org/0000-0003-3680-1152</orcidid><orcidid>https://orcid.org/0000-0002-6889-6216</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2022-04, Vol.193, p.731-743 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_journals_2646756082 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Actuation Attitudes Cages Control Control systems design Free fall GNC Gravitational waves Initial conditions Interferometers LISA LISA (antenna) MPC Optimization Plungers Predictive control Space missions Spacecraft |
title | The LISA DFACS: Model Predictive Control design for the test mass release phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20LISA%20DFACS:%20Model%20Predictive%20Control%20design%20for%20the%20test%20mass%20release%20phase&rft.jtitle=Acta%20astronautica&rft.au=Vidano,%20S.&rft.date=2022-04&rft.volume=193&rft.spage=731&rft.epage=743&rft.pages=731-743&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2021.12.056&rft_dat=%3Cproquest_cross%3E2646756082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646756082&rft_id=info:pmid/&rft_els_id=S0094576521007025&rfr_iscdi=true |