Developing parametrically upscaled constitutive and crack nucleation models for the α/β Ti64 alloy

This paper develops Parametrically Upscaled Constitutive Model (PUCM) and the Parametrically Upscaled Crack Nucleation Model (PUCNM) for a commercially used α/β-phase Ti64 alloy. These thermodynamically consistent macroscopic constitutive models bridge spatial scales through the explicit representat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2022-04, Vol.151, p.103182, Article 103182
Hauptverfasser: Shen, Jinlei, Kotha, Shravan, Noraas, Ryan, Venkatesh, Vasisht, Ghosh, Somnath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103182
container_title International journal of plasticity
container_volume 151
creator Shen, Jinlei
Kotha, Shravan
Noraas, Ryan
Venkatesh, Vasisht
Ghosh, Somnath
description This paper develops Parametrically Upscaled Constitutive Model (PUCM) and the Parametrically Upscaled Crack Nucleation Model (PUCNM) for a commercially used α/β-phase Ti64 alloy. These thermodynamically consistent macroscopic constitutive models bridge spatial scales through the explicit representation of Representative Aggregated Microstructural Parameters (RAMPs). The PUCNM is an indicator of the probability of crack nucleation in the local underlying microstructure. A symbolic regression-based machine learning method operates on data-sets generated by image-based micromechanical crystal plasticity simulations to derive constitutive coefficients as functions of the RAMPs. The PUCM/PUCNMs development (both calibration and validation) uses data from microstructural characterization as well as mechanical tests, including constant strain-rate, creep, and strain-controlled dwell tests for the Ti64 alloy. Parametric study is conducted with the experimentally-validated PUCM and PUCNM to investigate the effect of RAMPs on dwell fatigue crack nucleation life. Finally, the combined PUCM/PUCNM tool is used for examining the impact of microstructure on fatigue crack nucleation in an engine blade model under simulated operating conditions. The results from these examples clearly exhibit the promise of the PUCM/PUCNM models in predicting fatigue crack nucleation in the microstructure of real structural applications, as well as demonstrating the microstructural influence. •Multi-scale modeling of fatigue crack nucleation prediction in the α/β-phase Ti64 alloy.•Parametrically upscaled constitutive model (PUCM) and crack nucleation model (PUCNM).•Image-based CPFEM simulations create a database of homogenized response variables.•Parametric study investigates the effect of microstructural descriptors on dwell fatigue crack nucleation.•The PUCM/PUCNM tool examines the impact of microstructure in a generic bladed rotor under simulated operating conditions.
doi_str_mv 10.1016/j.ijplas.2021.103182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646756019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641921002485</els_id><sourcerecordid>2646756019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6c76552d7bd887cc4a38f297cc18324cb3e3041809df21fa8ade2bca76ecd94c3</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVoINM0b5CFoGvP6M-yvCmUtE0KgWyma6GRrhM5HsuV5IF5rORB5pmqwV1ndQ-He87lfgjdUrKmhMpNv_b9NJi0ZoTRYnGq2AVaUdW0FaO1-IRWpBFtJQVtr9DnlHpCSK04XSH3Aw4whMmPz3gy0ewhR2_NMBzxPKUiwGEbxpR9nrM_ADZjMaKxr3ic7QAm-zDifXAwJNyFiPML4NPb5vSOt14KXJrC8Qu67MyQ4Ob_vEZ_fv3c3j1Uj0_3v---P1aWc5EraRtZ18w1O6dUY60wXHWsLYoqzoTdceBEUEVa1zHaGWUcsJ01jQTrWmH5Nfq69E4x_J0hZd2HOY7lpGZSyKaWhLZlSyxbNoaUInR6in5v4lFTos88da8XnvrMUy88S-zbEiufwsFD1Ml6GC04H8Fm7YL_uOAfuCGC6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646756019</pqid></control><display><type>article</type><title>Developing parametrically upscaled constitutive and crack nucleation models for the α/β Ti64 alloy</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Shen, Jinlei ; Kotha, Shravan ; Noraas, Ryan ; Venkatesh, Vasisht ; Ghosh, Somnath</creator><creatorcontrib>Shen, Jinlei ; Kotha, Shravan ; Noraas, Ryan ; Venkatesh, Vasisht ; Ghosh, Somnath</creatorcontrib><description>This paper develops Parametrically Upscaled Constitutive Model (PUCM) and the Parametrically Upscaled Crack Nucleation Model (PUCNM) for a commercially used α/β-phase Ti64 alloy. These thermodynamically consistent macroscopic constitutive models bridge spatial scales through the explicit representation of Representative Aggregated Microstructural Parameters (RAMPs). The PUCNM is an indicator of the probability of crack nucleation in the local underlying microstructure. A symbolic regression-based machine learning method operates on data-sets generated by image-based micromechanical crystal plasticity simulations to derive constitutive coefficients as functions of the RAMPs. The PUCM/PUCNMs development (both calibration and validation) uses data from microstructural characterization as well as mechanical tests, including constant strain-rate, creep, and strain-controlled dwell tests for the Ti64 alloy. Parametric study is conducted with the experimentally-validated PUCM and PUCNM to investigate the effect of RAMPs on dwell fatigue crack nucleation life. Finally, the combined PUCM/PUCNM tool is used for examining the impact of microstructure on fatigue crack nucleation in an engine blade model under simulated operating conditions. The results from these examples clearly exhibit the promise of the PUCM/PUCNM models in predicting fatigue crack nucleation in the microstructure of real structural applications, as well as demonstrating the microstructural influence. •Multi-scale modeling of fatigue crack nucleation prediction in the α/β-phase Ti64 alloy.•Parametrically upscaled constitutive model (PUCM) and crack nucleation model (PUCNM).•Image-based CPFEM simulations create a database of homogenized response variables.•Parametric study investigates the effect of microstructural descriptors on dwell fatigue crack nucleation.•The PUCM/PUCNM tool examines the impact of microstructure in a generic bladed rotor under simulated operating conditions.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2021.103182</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Beta phase ; Constitutive models ; Crack initiation ; Crack propagation ; Creep (materials) ; Dual-phase titanium alloy ; Dwell fatigue crack nucleation ; Fatigue failure ; Fracture mechanics ; Machine learning ; Mathematical models ; Mechanical properties ; Mechanical tests ; Microstructure ; Nucleation ; Parametrically Upscaled Constitutive Model (PUCM) ; Parametrically Upscaled Crack Nucleation Model (PUCNM) ; Statistical analysis ; Strain rate ; Titanium base alloys</subject><ispartof>International journal of plasticity, 2022-04, Vol.151, p.103182, Article 103182</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6c76552d7bd887cc4a38f297cc18324cb3e3041809df21fa8ade2bca76ecd94c3</citedby><cites>FETCH-LOGICAL-c334t-6c76552d7bd887cc4a38f297cc18324cb3e3041809df21fa8ade2bca76ecd94c3</cites><orcidid>0000-0003-0793-6058 ; 0000-0001-5628-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijplas.2021.103182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Shen, Jinlei</creatorcontrib><creatorcontrib>Kotha, Shravan</creatorcontrib><creatorcontrib>Noraas, Ryan</creatorcontrib><creatorcontrib>Venkatesh, Vasisht</creatorcontrib><creatorcontrib>Ghosh, Somnath</creatorcontrib><title>Developing parametrically upscaled constitutive and crack nucleation models for the α/β Ti64 alloy</title><title>International journal of plasticity</title><description>This paper develops Parametrically Upscaled Constitutive Model (PUCM) and the Parametrically Upscaled Crack Nucleation Model (PUCNM) for a commercially used α/β-phase Ti64 alloy. These thermodynamically consistent macroscopic constitutive models bridge spatial scales through the explicit representation of Representative Aggregated Microstructural Parameters (RAMPs). The PUCNM is an indicator of the probability of crack nucleation in the local underlying microstructure. A symbolic regression-based machine learning method operates on data-sets generated by image-based micromechanical crystal plasticity simulations to derive constitutive coefficients as functions of the RAMPs. The PUCM/PUCNMs development (both calibration and validation) uses data from microstructural characterization as well as mechanical tests, including constant strain-rate, creep, and strain-controlled dwell tests for the Ti64 alloy. Parametric study is conducted with the experimentally-validated PUCM and PUCNM to investigate the effect of RAMPs on dwell fatigue crack nucleation life. Finally, the combined PUCM/PUCNM tool is used for examining the impact of microstructure on fatigue crack nucleation in an engine blade model under simulated operating conditions. The results from these examples clearly exhibit the promise of the PUCM/PUCNM models in predicting fatigue crack nucleation in the microstructure of real structural applications, as well as demonstrating the microstructural influence. •Multi-scale modeling of fatigue crack nucleation prediction in the α/β-phase Ti64 alloy.•Parametrically upscaled constitutive model (PUCM) and crack nucleation model (PUCNM).•Image-based CPFEM simulations create a database of homogenized response variables.•Parametric study investigates the effect of microstructural descriptors on dwell fatigue crack nucleation.•The PUCM/PUCNM tool examines the impact of microstructure in a generic bladed rotor under simulated operating conditions.</description><subject>Beta phase</subject><subject>Constitutive models</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Creep (materials)</subject><subject>Dual-phase titanium alloy</subject><subject>Dwell fatigue crack nucleation</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Microstructure</subject><subject>Nucleation</subject><subject>Parametrically Upscaled Constitutive Model (PUCM)</subject><subject>Parametrically Upscaled Crack Nucleation Model (PUCNM)</subject><subject>Statistical analysis</subject><subject>Strain rate</subject><subject>Titanium base alloys</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVoINM0b5CFoGvP6M-yvCmUtE0KgWyma6GRrhM5HsuV5IF5rORB5pmqwV1ndQ-He87lfgjdUrKmhMpNv_b9NJi0ZoTRYnGq2AVaUdW0FaO1-IRWpBFtJQVtr9DnlHpCSK04XSH3Aw4whMmPz3gy0ewhR2_NMBzxPKUiwGEbxpR9nrM_ADZjMaKxr3ic7QAm-zDifXAwJNyFiPML4NPb5vSOt14KXJrC8Qu67MyQ4Ob_vEZ_fv3c3j1Uj0_3v---P1aWc5EraRtZ18w1O6dUY60wXHWsLYoqzoTdceBEUEVa1zHaGWUcsJ01jQTrWmH5Nfq69E4x_J0hZd2HOY7lpGZSyKaWhLZlSyxbNoaUInR6in5v4lFTos88da8XnvrMUy88S-zbEiufwsFD1Ml6GC04H8Fm7YL_uOAfuCGC6A</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Shen, Jinlei</creator><creator>Kotha, Shravan</creator><creator>Noraas, Ryan</creator><creator>Venkatesh, Vasisht</creator><creator>Ghosh, Somnath</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0793-6058</orcidid><orcidid>https://orcid.org/0000-0001-5628-8064</orcidid></search><sort><creationdate>202204</creationdate><title>Developing parametrically upscaled constitutive and crack nucleation models for the α/β Ti64 alloy</title><author>Shen, Jinlei ; Kotha, Shravan ; Noraas, Ryan ; Venkatesh, Vasisht ; Ghosh, Somnath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6c76552d7bd887cc4a38f297cc18324cb3e3041809df21fa8ade2bca76ecd94c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beta phase</topic><topic>Constitutive models</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Creep (materials)</topic><topic>Dual-phase titanium alloy</topic><topic>Dwell fatigue crack nucleation</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Microstructure</topic><topic>Nucleation</topic><topic>Parametrically Upscaled Constitutive Model (PUCM)</topic><topic>Parametrically Upscaled Crack Nucleation Model (PUCNM)</topic><topic>Statistical analysis</topic><topic>Strain rate</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jinlei</creatorcontrib><creatorcontrib>Kotha, Shravan</creatorcontrib><creatorcontrib>Noraas, Ryan</creatorcontrib><creatorcontrib>Venkatesh, Vasisht</creatorcontrib><creatorcontrib>Ghosh, Somnath</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jinlei</au><au>Kotha, Shravan</au><au>Noraas, Ryan</au><au>Venkatesh, Vasisht</au><au>Ghosh, Somnath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing parametrically upscaled constitutive and crack nucleation models for the α/β Ti64 alloy</atitle><jtitle>International journal of plasticity</jtitle><date>2022-04</date><risdate>2022</risdate><volume>151</volume><spage>103182</spage><pages>103182-</pages><artnum>103182</artnum><issn>0749-6419</issn><eissn>1879-2154</eissn><abstract>This paper develops Parametrically Upscaled Constitutive Model (PUCM) and the Parametrically Upscaled Crack Nucleation Model (PUCNM) for a commercially used α/β-phase Ti64 alloy. These thermodynamically consistent macroscopic constitutive models bridge spatial scales through the explicit representation of Representative Aggregated Microstructural Parameters (RAMPs). The PUCNM is an indicator of the probability of crack nucleation in the local underlying microstructure. A symbolic regression-based machine learning method operates on data-sets generated by image-based micromechanical crystal plasticity simulations to derive constitutive coefficients as functions of the RAMPs. The PUCM/PUCNMs development (both calibration and validation) uses data from microstructural characterization as well as mechanical tests, including constant strain-rate, creep, and strain-controlled dwell tests for the Ti64 alloy. Parametric study is conducted with the experimentally-validated PUCM and PUCNM to investigate the effect of RAMPs on dwell fatigue crack nucleation life. Finally, the combined PUCM/PUCNM tool is used for examining the impact of microstructure on fatigue crack nucleation in an engine blade model under simulated operating conditions. The results from these examples clearly exhibit the promise of the PUCM/PUCNM models in predicting fatigue crack nucleation in the microstructure of real structural applications, as well as demonstrating the microstructural influence. •Multi-scale modeling of fatigue crack nucleation prediction in the α/β-phase Ti64 alloy.•Parametrically upscaled constitutive model (PUCM) and crack nucleation model (PUCNM).•Image-based CPFEM simulations create a database of homogenized response variables.•Parametric study investigates the effect of microstructural descriptors on dwell fatigue crack nucleation.•The PUCM/PUCNM tool examines the impact of microstructure in a generic bladed rotor under simulated operating conditions.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2021.103182</doi><orcidid>https://orcid.org/0000-0003-0793-6058</orcidid><orcidid>https://orcid.org/0000-0001-5628-8064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2022-04, Vol.151, p.103182, Article 103182
issn 0749-6419
1879-2154
language eng
recordid cdi_proquest_journals_2646756019
source ScienceDirect Journals (5 years ago - present)
subjects Beta phase
Constitutive models
Crack initiation
Crack propagation
Creep (materials)
Dual-phase titanium alloy
Dwell fatigue crack nucleation
Fatigue failure
Fracture mechanics
Machine learning
Mathematical models
Mechanical properties
Mechanical tests
Microstructure
Nucleation
Parametrically Upscaled Constitutive Model (PUCM)
Parametrically Upscaled Crack Nucleation Model (PUCNM)
Statistical analysis
Strain rate
Titanium base alloys
title Developing parametrically upscaled constitutive and crack nucleation models for the α/β Ti64 alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20parametrically%20upscaled%20constitutive%20and%20crack%20nucleation%20models%20for%20the%20%CE%B1/%CE%B2%20Ti64%20alloy&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Shen,%20Jinlei&rft.date=2022-04&rft.volume=151&rft.spage=103182&rft.pages=103182-&rft.artnum=103182&rft.issn=0749-6419&rft.eissn=1879-2154&rft_id=info:doi/10.1016/j.ijplas.2021.103182&rft_dat=%3Cproquest_cross%3E2646756019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646756019&rft_id=info:pmid/&rft_els_id=S0749641921002485&rfr_iscdi=true