Surface defect-engineered CeO2−x by ultrasound treatment for superior photocatalytic H2 production and water treatment

Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2022-01, Vol.12 (7), p.2071-2083
Hauptverfasser: Sujay Shekar G C, Alkanad, Khaled, Alnaggar, Gubran, Al-Zaqri, Nabil, Mohammed Abdullah Bajiri, Thejaswini, B, Dhileepan, M D, Neppolian, Bernaurdshaw, Lokanath, N K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2083
container_issue 7
container_start_page 2071
container_title Catalysis science & technology
container_volume 12
creator Sujay Shekar G C
Alkanad, Khaled
Alnaggar, Gubran
Al-Zaqri, Nabil
Mohammed Abdullah Bajiri
Thejaswini, B
Dhileepan, M D
Neppolian, Bernaurdshaw
Lokanath, N K
description Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2−x nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsic crystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO2−x revealed higher crystallinity, as well as morphological optimization and the presence of oxygen vacancies is verified through Raman, X-ray photoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spin resonance analyses. Oxygen vacancies accelerate the redox cycle between Ce4+ and Ce3+ by prolonging photogenerated charge recombination. The ultrasound-treated pristine CeO2 sample achieved excellent hydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Our promising findings demonstrated that ultrasonic treatment causes the formation of surface oxygen vacancies and improves photocatalytic hydrogen evolution and pollution degradation.
doi_str_mv 10.1039/d1cy01940f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2646700455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646700455</sourcerecordid><originalsourceid>FETCH-LOGICAL-p134f-b4ce5c17e393bbf1bbece1c3746a2127649fd4e532b4e9e74b7ccf6a1097a66a3</originalsourceid><addsrcrecordid>eNpFUM1KAzEYDKJgqb34BAHPq_n5NjFHKWoLhR7Uc0myX3RL3azZBNs38Owj-iQuKDqXmcv8MIScc3bJmTRXDfcHxg2wcEQmggFUoBU__tO1PCWzYdiyEWA4uxYTsn8oKViPtMGAPlfYPbcdYsKGznEtvj4-99QdaNnlZIdYuobmhDa_YpdpiIkOpcfUjqJ_iTl6m-3ukFtPF4L2KTbF5zZ21I6-d5sx_bvPyEmwuwFnvzwlT3e3j_NFtVrfL-c3q6rnEkLlwGPtuUZppHOBO4ceuZcalBVcaAUmNIC1FA7QoAanvQ_Kcma0VcrKKbn4yR3nvBUc8mYbS-rGyo1QoPR4RV3LbzKQYlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646700455</pqid></control><display><type>article</type><title>Surface defect-engineered CeO2−x by ultrasound treatment for superior photocatalytic H2 production and water treatment</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sujay Shekar G C ; Alkanad, Khaled ; Alnaggar, Gubran ; Al-Zaqri, Nabil ; Mohammed Abdullah Bajiri ; Thejaswini, B ; Dhileepan, M D ; Neppolian, Bernaurdshaw ; Lokanath, N K</creator><creatorcontrib>Sujay Shekar G C ; Alkanad, Khaled ; Alnaggar, Gubran ; Al-Zaqri, Nabil ; Mohammed Abdullah Bajiri ; Thejaswini, B ; Dhileepan, M D ; Neppolian, Bernaurdshaw ; Lokanath, N K</creatorcontrib><description>Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2−x nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsic crystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO2−x revealed higher crystallinity, as well as morphological optimization and the presence of oxygen vacancies is verified through Raman, X-ray photoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spin resonance analyses. Oxygen vacancies accelerate the redox cycle between Ce4+ and Ce3+ by prolonging photogenerated charge recombination. The ultrasound-treated pristine CeO2 sample achieved excellent hydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Our promising findings demonstrated that ultrasonic treatment causes the formation of surface oxygen vacancies and improves photocatalytic hydrogen evolution and pollution degradation.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d1cy01940f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cavitation ; Cerium oxides ; Crystal defects ; Crystal structure ; Degradation ; Efficiency ; Electromagnetic absorption ; Electron paramagnetic resonance ; Electron spin ; Heterostructures ; Hydrogen evolution ; Hydrogen production ; Lattice vacancies ; Nanostructure ; Optimization ; Oxidation ; Oxygen ; Photocatalysis ; Photoelectrons ; Photoluminescence ; Quantum efficiency ; Spin resonance ; Structural analysis ; Surface defects ; Ultrasonic imaging ; Water treatment</subject><ispartof>Catalysis science &amp; technology, 2022-01, Vol.12 (7), p.2071-2083</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sujay Shekar G C</creatorcontrib><creatorcontrib>Alkanad, Khaled</creatorcontrib><creatorcontrib>Alnaggar, Gubran</creatorcontrib><creatorcontrib>Al-Zaqri, Nabil</creatorcontrib><creatorcontrib>Mohammed Abdullah Bajiri</creatorcontrib><creatorcontrib>Thejaswini, B</creatorcontrib><creatorcontrib>Dhileepan, M D</creatorcontrib><creatorcontrib>Neppolian, Bernaurdshaw</creatorcontrib><creatorcontrib>Lokanath, N K</creatorcontrib><title>Surface defect-engineered CeO2−x by ultrasound treatment for superior photocatalytic H2 production and water treatment</title><title>Catalysis science &amp; technology</title><description>Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2−x nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsic crystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO2−x revealed higher crystallinity, as well as morphological optimization and the presence of oxygen vacancies is verified through Raman, X-ray photoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spin resonance analyses. Oxygen vacancies accelerate the redox cycle between Ce4+ and Ce3+ by prolonging photogenerated charge recombination. The ultrasound-treated pristine CeO2 sample achieved excellent hydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Our promising findings demonstrated that ultrasonic treatment causes the formation of surface oxygen vacancies and improves photocatalytic hydrogen evolution and pollution degradation.</description><subject>Cavitation</subject><subject>Cerium oxides</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Degradation</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Lattice vacancies</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Photocatalysis</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Quantum efficiency</subject><subject>Spin resonance</subject><subject>Structural analysis</subject><subject>Surface defects</subject><subject>Ultrasonic imaging</subject><subject>Water treatment</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFUM1KAzEYDKJgqb34BAHPq_n5NjFHKWoLhR7Uc0myX3RL3azZBNs38Owj-iQuKDqXmcv8MIScc3bJmTRXDfcHxg2wcEQmggFUoBU__tO1PCWzYdiyEWA4uxYTsn8oKViPtMGAPlfYPbcdYsKGznEtvj4-99QdaNnlZIdYuobmhDa_YpdpiIkOpcfUjqJ_iTl6m-3ukFtPF4L2KTbF5zZ21I6-d5sx_bvPyEmwuwFnvzwlT3e3j_NFtVrfL-c3q6rnEkLlwGPtuUZppHOBO4ceuZcalBVcaAUmNIC1FA7QoAanvQ_Kcma0VcrKKbn4yR3nvBUc8mYbS-rGyo1QoPR4RV3LbzKQYlk</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>Sujay Shekar G C</creator><creator>Alkanad, Khaled</creator><creator>Alnaggar, Gubran</creator><creator>Al-Zaqri, Nabil</creator><creator>Mohammed Abdullah Bajiri</creator><creator>Thejaswini, B</creator><creator>Dhileepan, M D</creator><creator>Neppolian, Bernaurdshaw</creator><creator>Lokanath, N K</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220104</creationdate><title>Surface defect-engineered CeO2−x by ultrasound treatment for superior photocatalytic H2 production and water treatment</title><author>Sujay Shekar G C ; Alkanad, Khaled ; Alnaggar, Gubran ; Al-Zaqri, Nabil ; Mohammed Abdullah Bajiri ; Thejaswini, B ; Dhileepan, M D ; Neppolian, Bernaurdshaw ; Lokanath, N K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p134f-b4ce5c17e393bbf1bbece1c3746a2127649fd4e532b4e9e74b7ccf6a1097a66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cavitation</topic><topic>Cerium oxides</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Degradation</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Lattice vacancies</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Photocatalysis</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Quantum efficiency</topic><topic>Spin resonance</topic><topic>Structural analysis</topic><topic>Surface defects</topic><topic>Ultrasonic imaging</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sujay Shekar G C</creatorcontrib><creatorcontrib>Alkanad, Khaled</creatorcontrib><creatorcontrib>Alnaggar, Gubran</creatorcontrib><creatorcontrib>Al-Zaqri, Nabil</creatorcontrib><creatorcontrib>Mohammed Abdullah Bajiri</creatorcontrib><creatorcontrib>Thejaswini, B</creatorcontrib><creatorcontrib>Dhileepan, M D</creatorcontrib><creatorcontrib>Neppolian, Bernaurdshaw</creatorcontrib><creatorcontrib>Lokanath, N K</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sujay Shekar G C</au><au>Alkanad, Khaled</au><au>Alnaggar, Gubran</au><au>Al-Zaqri, Nabil</au><au>Mohammed Abdullah Bajiri</au><au>Thejaswini, B</au><au>Dhileepan, M D</au><au>Neppolian, Bernaurdshaw</au><au>Lokanath, N K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface defect-engineered CeO2−x by ultrasound treatment for superior photocatalytic H2 production and water treatment</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2022-01-04</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>2071</spage><epage>2083</epage><pages>2071-2083</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2−x nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsic crystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO2−x revealed higher crystallinity, as well as morphological optimization and the presence of oxygen vacancies is verified through Raman, X-ray photoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spin resonance analyses. Oxygen vacancies accelerate the redox cycle between Ce4+ and Ce3+ by prolonging photogenerated charge recombination. The ultrasound-treated pristine CeO2 sample achieved excellent hydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Our promising findings demonstrated that ultrasonic treatment causes the formation of surface oxygen vacancies and improves photocatalytic hydrogen evolution and pollution degradation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cy01940f</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2022-01, Vol.12 (7), p.2071-2083
issn 2044-4753
2044-4761
language eng
recordid cdi_proquest_journals_2646700455
source Royal Society Of Chemistry Journals 2008-
subjects Cavitation
Cerium oxides
Crystal defects
Crystal structure
Degradation
Efficiency
Electromagnetic absorption
Electron paramagnetic resonance
Electron spin
Heterostructures
Hydrogen evolution
Hydrogen production
Lattice vacancies
Nanostructure
Optimization
Oxidation
Oxygen
Photocatalysis
Photoelectrons
Photoluminescence
Quantum efficiency
Spin resonance
Structural analysis
Surface defects
Ultrasonic imaging
Water treatment
title Surface defect-engineered CeO2−x by ultrasound treatment for superior photocatalytic H2 production and water treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20defect-engineered%20CeO2%E2%88%92x%20by%20ultrasound%20treatment%20for%20superior%20photocatalytic%20H2%20production%20and%20water%20treatment&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Sujay%20Shekar%20G%20C&rft.date=2022-01-04&rft.volume=12&rft.issue=7&rft.spage=2071&rft.epage=2083&rft.pages=2071-2083&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d1cy01940f&rft_dat=%3Cproquest%3E2646700455%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646700455&rft_id=info:pmid/&rfr_iscdi=true