PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement

To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2022-03, Vol.2022, p.1-12
Hauptverfasser: Hou, Botao, Zhang, Ke, Zuo, Xiaojun, Zhao, Jianli, Xi, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2022
creator Hou, Botao
Zhang, Ke
Zuo, Xiaojun
Zhao, Jianli
Xi, Bo
description To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed. Aiming at the imbalance of network traffic, malicious samples generation based on GAN is adopted, which uses the advantages of confrontation training in GAN to generate a small amount of malicious traffic to balance the PIoT malicious traffic. Secondly, 33 features are selected serially to construct a malicious traffic feature set by using analysis of variance and correlation analysis. Finally, the PIoT malicious traffic detection algorithm is implemented based on CatBoost and grid search. The effectiveness of the proposed method is verified on the public dataset CICIDS2017. The experimental results show that the recall rate of the proposed method on CatBoost reaches 96.60%, which is 21.16% higher than that before unbalancing, and the detection accuracy rate reaches 97.96%, which increases 8% compared to that of the other balanced methods, which significantly improves the detection performance of PIoT malicious traffic.
doi_str_mv 10.1155/2022/9223412
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646640419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646640419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8b7cacea089b406ed09425c9667957b2f41b7d142d23f50255315c5daa60c0933</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs3f0DAo65NJh_bHGuttdCqYD2HbJKlKe2mJlvEf--WikdPMwMP8_I-CF1Tck-pEAMgAAMFwDiFE9SjiqmCUIDTv53yc3SR85oQSXnJe2j6NotLvDCbYEPcZ7xMpq6DxY--9bYNscEL366iww8me4e7ezp6we9mu9t4PGlWprF-65v2Ep3VZpP91e_so4-nyXL8XMxfp7PxaF5Yxsq2GFalNdYbMlQVJ9I7ojgIq6QslSgrqDmtSkc5OGC1ICAEo8IKZ4wklijG-ujm-HeX4ufe51av4z41XaQGyaXkhHdV--juSNkUc06-1rsUtiZ9a0r0QZU-qNK_qjr89oivQuPMV_if_gFvXGV9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646640419</pqid></control><display><type>article</type><title>PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hou, Botao ; Zhang, Ke ; Zuo, Xiaojun ; Zhao, Jianli ; Xi, Bo</creator><contributor>Feng, Jingyu ; Jingyu Feng</contributor><creatorcontrib>Hou, Botao ; Zhang, Ke ; Zuo, Xiaojun ; Zhao, Jianli ; Xi, Bo ; Feng, Jingyu ; Jingyu Feng</creatorcontrib><description>To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed. Aiming at the imbalance of network traffic, malicious samples generation based on GAN is adopted, which uses the advantages of confrontation training in GAN to generate a small amount of malicious traffic to balance the PIoT malicious traffic. Secondly, 33 features are selected serially to construct a malicious traffic feature set by using analysis of variance and correlation analysis. Finally, the PIoT malicious traffic detection algorithm is implemented based on CatBoost and grid search. The effectiveness of the proposed method is verified on the public dataset CICIDS2017. The experimental results show that the recall rate of the proposed method on CatBoost reaches 96.60%, which is 21.16% higher than that before unbalancing, and the detection accuracy rate reaches 97.96%, which increases 8% compared to that of the other balanced methods, which significantly improves the detection performance of PIoT malicious traffic.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/9223412</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Classification ; Communication ; Communications traffic ; Computer networks ; Correlation analysis ; Datasets ; Deep learning ; Denial of service attacks ; Electricity distribution ; Feature selection ; Internet of Things ; Machine learning ; Privacy ; Protocol ; Traffic models ; Variance analysis</subject><ispartof>Security and communication networks, 2022-03, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Botao Hou et al.</rights><rights>Copyright © 2022 Botao Hou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8b7cacea089b406ed09425c9667957b2f41b7d142d23f50255315c5daa60c0933</citedby><cites>FETCH-LOGICAL-c337t-8b7cacea089b406ed09425c9667957b2f41b7d142d23f50255315c5daa60c0933</cites><orcidid>0000-0001-6233-2674 ; 0000-0001-8413-2200 ; 0000-0001-6769-0286 ; 0000-0001-8962-3674 ; 0000-0003-3972-0243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Feng, Jingyu</contributor><contributor>Jingyu Feng</contributor><creatorcontrib>Hou, Botao</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Zuo, Xiaojun</creatorcontrib><creatorcontrib>Zhao, Jianli</creatorcontrib><creatorcontrib>Xi, Bo</creatorcontrib><title>PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement</title><title>Security and communication networks</title><description>To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed. Aiming at the imbalance of network traffic, malicious samples generation based on GAN is adopted, which uses the advantages of confrontation training in GAN to generate a small amount of malicious traffic to balance the PIoT malicious traffic. Secondly, 33 features are selected serially to construct a malicious traffic feature set by using analysis of variance and correlation analysis. Finally, the PIoT malicious traffic detection algorithm is implemented based on CatBoost and grid search. The effectiveness of the proposed method is verified on the public dataset CICIDS2017. The experimental results show that the recall rate of the proposed method on CatBoost reaches 96.60%, which is 21.16% higher than that before unbalancing, and the detection accuracy rate reaches 97.96%, which increases 8% compared to that of the other balanced methods, which significantly improves the detection performance of PIoT malicious traffic.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Communication</subject><subject>Communications traffic</subject><subject>Computer networks</subject><subject>Correlation analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Electricity distribution</subject><subject>Feature selection</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>Protocol</subject><subject>Traffic models</subject><subject>Variance analysis</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKs3f0DAo65NJh_bHGuttdCqYD2HbJKlKe2mJlvEf--WikdPMwMP8_I-CF1Tck-pEAMgAAMFwDiFE9SjiqmCUIDTv53yc3SR85oQSXnJe2j6NotLvDCbYEPcZ7xMpq6DxY--9bYNscEL366iww8me4e7ezp6we9mu9t4PGlWprF-65v2Ep3VZpP91e_so4-nyXL8XMxfp7PxaF5Yxsq2GFalNdYbMlQVJ9I7ojgIq6QslSgrqDmtSkc5OGC1ICAEo8IKZ4wklijG-ujm-HeX4ufe51av4z41XaQGyaXkhHdV--juSNkUc06-1rsUtiZ9a0r0QZU-qNK_qjr89oivQuPMV_if_gFvXGV9</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Hou, Botao</creator><creator>Zhang, Ke</creator><creator>Zuo, Xiaojun</creator><creator>Zhao, Jianli</creator><creator>Xi, Bo</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6233-2674</orcidid><orcidid>https://orcid.org/0000-0001-8413-2200</orcidid><orcidid>https://orcid.org/0000-0001-6769-0286</orcidid><orcidid>https://orcid.org/0000-0001-8962-3674</orcidid><orcidid>https://orcid.org/0000-0003-3972-0243</orcidid></search><sort><creationdate>20220323</creationdate><title>PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement</title><author>Hou, Botao ; Zhang, Ke ; Zuo, Xiaojun ; Zhao, Jianli ; Xi, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8b7cacea089b406ed09425c9667957b2f41b7d142d23f50255315c5daa60c0933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Communication</topic><topic>Communications traffic</topic><topic>Computer networks</topic><topic>Correlation analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Electricity distribution</topic><topic>Feature selection</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>Protocol</topic><topic>Traffic models</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Botao</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Zuo, Xiaojun</creatorcontrib><creatorcontrib>Zhao, Jianli</creatorcontrib><creatorcontrib>Xi, Bo</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Botao</au><au>Zhang, Ke</au><au>Zuo, Xiaojun</au><au>Zhao, Jianli</au><au>Xi, Bo</au><au>Feng, Jingyu</au><au>Jingyu Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement</atitle><jtitle>Security and communication networks</jtitle><date>2022-03-23</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed. Aiming at the imbalance of network traffic, malicious samples generation based on GAN is adopted, which uses the advantages of confrontation training in GAN to generate a small amount of malicious traffic to balance the PIoT malicious traffic. Secondly, 33 features are selected serially to construct a malicious traffic feature set by using analysis of variance and correlation analysis. Finally, the PIoT malicious traffic detection algorithm is implemented based on CatBoost and grid search. The effectiveness of the proposed method is verified on the public dataset CICIDS2017. The experimental results show that the recall rate of the proposed method on CatBoost reaches 96.60%, which is 21.16% higher than that before unbalancing, and the detection accuracy rate reaches 97.96%, which increases 8% compared to that of the other balanced methods, which significantly improves the detection performance of PIoT malicious traffic.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/9223412</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6233-2674</orcidid><orcidid>https://orcid.org/0000-0001-8413-2200</orcidid><orcidid>https://orcid.org/0000-0001-6769-0286</orcidid><orcidid>https://orcid.org/0000-0001-8962-3674</orcidid><orcidid>https://orcid.org/0000-0003-3972-0243</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2022-03, Vol.2022, p.1-12
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2646640419
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Classification
Communication
Communications traffic
Computer networks
Correlation analysis
Datasets
Deep learning
Denial of service attacks
Electricity distribution
Feature selection
Internet of Things
Machine learning
Privacy
Protocol
Traffic models
Variance analysis
title PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PIoT%20Malicious%20Traffic%20Detection%20Method%20Based%20on%20GAN%20Sample%20Enhancement&rft.jtitle=Security%20and%20communication%20networks&rft.au=Hou,%20Botao&rft.date=2022-03-23&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/9223412&rft_dat=%3Cproquest_cross%3E2646640419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646640419&rft_id=info:pmid/&rfr_iscdi=true