PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement
To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed....
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2022-03, Vol.2022, p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2022 |
creator | Hou, Botao Zhang, Ke Zuo, Xiaojun Zhao, Jianli Xi, Bo |
description | To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed. Aiming at the imbalance of network traffic, malicious samples generation based on GAN is adopted, which uses the advantages of confrontation training in GAN to generate a small amount of malicious traffic to balance the PIoT malicious traffic. Secondly, 33 features are selected serially to construct a malicious traffic feature set by using analysis of variance and correlation analysis. Finally, the PIoT malicious traffic detection algorithm is implemented based on CatBoost and grid search. The effectiveness of the proposed method is verified on the public dataset CICIDS2017. The experimental results show that the recall rate of the proposed method on CatBoost reaches 96.60%, which is 21.16% higher than that before unbalancing, and the detection accuracy rate reaches 97.96%, which increases 8% compared to that of the other balanced methods, which significantly improves the detection performance of PIoT malicious traffic. |
doi_str_mv | 10.1155/2022/9223412 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646640419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646640419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8b7cacea089b406ed09425c9667957b2f41b7d142d23f50255315c5daa60c0933</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs3f0DAo65NJh_bHGuttdCqYD2HbJKlKe2mJlvEf--WikdPMwMP8_I-CF1Tck-pEAMgAAMFwDiFE9SjiqmCUIDTv53yc3SR85oQSXnJe2j6NotLvDCbYEPcZ7xMpq6DxY--9bYNscEL366iww8me4e7ezp6we9mu9t4PGlWprF-65v2Ep3VZpP91e_so4-nyXL8XMxfp7PxaF5Yxsq2GFalNdYbMlQVJ9I7ojgIq6QslSgrqDmtSkc5OGC1ICAEo8IKZ4wklijG-ujm-HeX4ufe51av4z41XaQGyaXkhHdV--juSNkUc06-1rsUtiZ9a0r0QZU-qNK_qjr89oivQuPMV_if_gFvXGV9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646640419</pqid></control><display><type>article</type><title>PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hou, Botao ; Zhang, Ke ; Zuo, Xiaojun ; Zhao, Jianli ; Xi, Bo</creator><contributor>Feng, Jingyu ; Jingyu Feng</contributor><creatorcontrib>Hou, Botao ; Zhang, Ke ; Zuo, Xiaojun ; Zhao, Jianli ; Xi, Bo ; Feng, Jingyu ; Jingyu Feng</creatorcontrib><description>To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed. Aiming at the imbalance of network traffic, malicious samples generation based on GAN is adopted, which uses the advantages of confrontation training in GAN to generate a small amount of malicious traffic to balance the PIoT malicious traffic. Secondly, 33 features are selected serially to construct a malicious traffic feature set by using analysis of variance and correlation analysis. Finally, the PIoT malicious traffic detection algorithm is implemented based on CatBoost and grid search. The effectiveness of the proposed method is verified on the public dataset CICIDS2017. The experimental results show that the recall rate of the proposed method on CatBoost reaches 96.60%, which is 21.16% higher than that before unbalancing, and the detection accuracy rate reaches 97.96%, which increases 8% compared to that of the other balanced methods, which significantly improves the detection performance of PIoT malicious traffic.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/9223412</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Classification ; Communication ; Communications traffic ; Computer networks ; Correlation analysis ; Datasets ; Deep learning ; Denial of service attacks ; Electricity distribution ; Feature selection ; Internet of Things ; Machine learning ; Privacy ; Protocol ; Traffic models ; Variance analysis</subject><ispartof>Security and communication networks, 2022-03, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Botao Hou et al.</rights><rights>Copyright © 2022 Botao Hou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8b7cacea089b406ed09425c9667957b2f41b7d142d23f50255315c5daa60c0933</citedby><cites>FETCH-LOGICAL-c337t-8b7cacea089b406ed09425c9667957b2f41b7d142d23f50255315c5daa60c0933</cites><orcidid>0000-0001-6233-2674 ; 0000-0001-8413-2200 ; 0000-0001-6769-0286 ; 0000-0001-8962-3674 ; 0000-0003-3972-0243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Feng, Jingyu</contributor><contributor>Jingyu Feng</contributor><creatorcontrib>Hou, Botao</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Zuo, Xiaojun</creatorcontrib><creatorcontrib>Zhao, Jianli</creatorcontrib><creatorcontrib>Xi, Bo</creatorcontrib><title>PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement</title><title>Security and communication networks</title><description>To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed. Aiming at the imbalance of network traffic, malicious samples generation based on GAN is adopted, which uses the advantages of confrontation training in GAN to generate a small amount of malicious traffic to balance the PIoT malicious traffic. Secondly, 33 features are selected serially to construct a malicious traffic feature set by using analysis of variance and correlation analysis. Finally, the PIoT malicious traffic detection algorithm is implemented based on CatBoost and grid search. The effectiveness of the proposed method is verified on the public dataset CICIDS2017. The experimental results show that the recall rate of the proposed method on CatBoost reaches 96.60%, which is 21.16% higher than that before unbalancing, and the detection accuracy rate reaches 97.96%, which increases 8% compared to that of the other balanced methods, which significantly improves the detection performance of PIoT malicious traffic.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Communication</subject><subject>Communications traffic</subject><subject>Computer networks</subject><subject>Correlation analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Electricity distribution</subject><subject>Feature selection</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>Protocol</subject><subject>Traffic models</subject><subject>Variance analysis</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKs3f0DAo65NJh_bHGuttdCqYD2HbJKlKe2mJlvEf--WikdPMwMP8_I-CF1Tck-pEAMgAAMFwDiFE9SjiqmCUIDTv53yc3SR85oQSXnJe2j6NotLvDCbYEPcZ7xMpq6DxY--9bYNscEL366iww8me4e7ezp6we9mu9t4PGlWprF-65v2Ep3VZpP91e_so4-nyXL8XMxfp7PxaF5Yxsq2GFalNdYbMlQVJ9I7ojgIq6QslSgrqDmtSkc5OGC1ICAEo8IKZ4wklijG-ujm-HeX4ufe51av4z41XaQGyaXkhHdV--juSNkUc06-1rsUtiZ9a0r0QZU-qNK_qjr89oivQuPMV_if_gFvXGV9</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Hou, Botao</creator><creator>Zhang, Ke</creator><creator>Zuo, Xiaojun</creator><creator>Zhao, Jianli</creator><creator>Xi, Bo</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6233-2674</orcidid><orcidid>https://orcid.org/0000-0001-8413-2200</orcidid><orcidid>https://orcid.org/0000-0001-6769-0286</orcidid><orcidid>https://orcid.org/0000-0001-8962-3674</orcidid><orcidid>https://orcid.org/0000-0003-3972-0243</orcidid></search><sort><creationdate>20220323</creationdate><title>PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement</title><author>Hou, Botao ; Zhang, Ke ; Zuo, Xiaojun ; Zhao, Jianli ; Xi, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8b7cacea089b406ed09425c9667957b2f41b7d142d23f50255315c5daa60c0933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Communication</topic><topic>Communications traffic</topic><topic>Computer networks</topic><topic>Correlation analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Electricity distribution</topic><topic>Feature selection</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>Protocol</topic><topic>Traffic models</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Botao</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Zuo, Xiaojun</creatorcontrib><creatorcontrib>Zhao, Jianli</creatorcontrib><creatorcontrib>Xi, Bo</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Botao</au><au>Zhang, Ke</au><au>Zuo, Xiaojun</au><au>Zhao, Jianli</au><au>Xi, Bo</au><au>Feng, Jingyu</au><au>Jingyu Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement</atitle><jtitle>Security and communication networks</jtitle><date>2022-03-23</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>To solve the problem of network traffic data imbalance under the background of power Internet of things and improve the poor generalization ability of the model, a PIoT malicious traffic detection method based on GAN sample enhancement is developed. Firstly, network traffic samples are preprocessed. Aiming at the imbalance of network traffic, malicious samples generation based on GAN is adopted, which uses the advantages of confrontation training in GAN to generate a small amount of malicious traffic to balance the PIoT malicious traffic. Secondly, 33 features are selected serially to construct a malicious traffic feature set by using analysis of variance and correlation analysis. Finally, the PIoT malicious traffic detection algorithm is implemented based on CatBoost and grid search. The effectiveness of the proposed method is verified on the public dataset CICIDS2017. The experimental results show that the recall rate of the proposed method on CatBoost reaches 96.60%, which is 21.16% higher than that before unbalancing, and the detection accuracy rate reaches 97.96%, which increases 8% compared to that of the other balanced methods, which significantly improves the detection performance of PIoT malicious traffic.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/9223412</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6233-2674</orcidid><orcidid>https://orcid.org/0000-0001-8413-2200</orcidid><orcidid>https://orcid.org/0000-0001-6769-0286</orcidid><orcidid>https://orcid.org/0000-0001-8962-3674</orcidid><orcidid>https://orcid.org/0000-0003-3972-0243</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2022-03, Vol.2022, p.1-12 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2646640419 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Classification Communication Communications traffic Computer networks Correlation analysis Datasets Deep learning Denial of service attacks Electricity distribution Feature selection Internet of Things Machine learning Privacy Protocol Traffic models Variance analysis |
title | PIoT Malicious Traffic Detection Method Based on GAN Sample Enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PIoT%20Malicious%20Traffic%20Detection%20Method%20Based%20on%20GAN%20Sample%20Enhancement&rft.jtitle=Security%20and%20communication%20networks&rft.au=Hou,%20Botao&rft.date=2022-03-23&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/9223412&rft_dat=%3Cproquest_cross%3E2646640419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646640419&rft_id=info:pmid/&rfr_iscdi=true |