Gegenbauer wavelet quasi‐linearization method for solving fractional population growth model in a closed system

In this article, a novel collocation method is developed based on Gegenbauer wavelets together with the quasi‐linearization technique to facilitate the solution of population growth model of fractional order in a closed system. The operational matrices of fractional order integration are obtained vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2022-05, Vol.45 (7), p.3605-3623
Hauptverfasser: Shah, Firdous A., Irfan, Mohd, Nisar, Kottakkaran S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3623
container_issue 7
container_start_page 3605
container_title Mathematical methods in the applied sciences
container_volume 45
creator Shah, Firdous A.
Irfan, Mohd
Nisar, Kottakkaran S.
description In this article, a novel collocation method is developed based on Gegenbauer wavelets together with the quasi‐linearization technique to facilitate the solution of population growth model of fractional order in a closed system. The operational matrices of fractional order integration are obtained via block‐pulse functions. The obtained matrices are employed to transform the given time‐fractional population growth model into a non‐linear system of algebraic equations. Then, the quasi‐linearization technique is invoked to convert the underlying equations to a linear system of equations. The performance and accuracy of the proposed method is elucidated by a presenting a comparison with some numerical methods existing in the open literature. The numerical outcomes shows that the present method is more efficient than the existing ones.
doi_str_mv 10.1002/mma.8006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646631297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646631297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-8928bc072a906e056f23b74f50b5420a8c54da0b43b55f3d57c66da3d1a753bd3</originalsourceid><addsrcrecordid>eNp10LFOwzAQgGELgUQpSDyCJRaWlLMdO8lYVVCQWrHAHF0Sp03lxK2dtCoTj8Az8iSkhJXphvt0Ov2E3DKYMAD-UNc4iQHUGRkxSJKAhZE6JyNgEQQhZ-ElufJ-AwAxY3xEdnO90k2GnXb0gHttdEt3Hfrq-_PLVI1GV31gW9mG1rpd24KW1lFvzb5qVrR0mJ92aOjWbjszwJWzh3ZNa1toQ6uGIs2N9bqg_uhbXV-TixKN1zd_c0zenx7fZs_B4nX-MpsugpwnQgVxwuMsh4hjAkqDVCUXWRSWEjIZcsA4l2GBkIUik7IUhYxypQoUBcNIiqwQY3I33N06u-u0b9ON7Vz_q0-5CpUSjCdRr-4HlTvrvdNlunVVje6YMkhPQdM-aHoK2tNgoIfK6OO_Ll0up7_-B0r6eZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646631297</pqid></control><display><type>article</type><title>Gegenbauer wavelet quasi‐linearization method for solving fractional population growth model in a closed system</title><source>Wiley-Blackwell Journals</source><creator>Shah, Firdous A. ; Irfan, Mohd ; Nisar, Kottakkaran S.</creator><creatorcontrib>Shah, Firdous A. ; Irfan, Mohd ; Nisar, Kottakkaran S.</creatorcontrib><description>In this article, a novel collocation method is developed based on Gegenbauer wavelets together with the quasi‐linearization technique to facilitate the solution of population growth model of fractional order in a closed system. The operational matrices of fractional order integration are obtained via block‐pulse functions. The obtained matrices are employed to transform the given time‐fractional population growth model into a non‐linear system of algebraic equations. Then, the quasi‐linearization technique is invoked to convert the underlying equations to a linear system of equations. The performance and accuracy of the proposed method is elucidated by a presenting a comparison with some numerical methods existing in the open literature. The numerical outcomes shows that the present method is more efficient than the existing ones.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8006</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>collocation method ; Collocation methods ; fractional derivative ; Gegenbauer wavelet ; Growth models ; Linearization ; logistic equation ; Mathematical models ; Numerical methods ; operational matrices ; Population growth ; quasi‐linearization ; Volterra's population model</subject><ispartof>Mathematical methods in the applied sciences, 2022-05, Vol.45 (7), p.3605-3623</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-8928bc072a906e056f23b74f50b5420a8c54da0b43b55f3d57c66da3d1a753bd3</citedby><cites>FETCH-LOGICAL-c2936-8928bc072a906e056f23b74f50b5420a8c54da0b43b55f3d57c66da3d1a753bd3</cites><orcidid>0000-0001-8461-869X ; 0000-0001-5769-4320 ; 0000-0002-9088-123X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.8006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.8006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shah, Firdous A.</creatorcontrib><creatorcontrib>Irfan, Mohd</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S.</creatorcontrib><title>Gegenbauer wavelet quasi‐linearization method for solving fractional population growth model in a closed system</title><title>Mathematical methods in the applied sciences</title><description>In this article, a novel collocation method is developed based on Gegenbauer wavelets together with the quasi‐linearization technique to facilitate the solution of population growth model of fractional order in a closed system. The operational matrices of fractional order integration are obtained via block‐pulse functions. The obtained matrices are employed to transform the given time‐fractional population growth model into a non‐linear system of algebraic equations. Then, the quasi‐linearization technique is invoked to convert the underlying equations to a linear system of equations. The performance and accuracy of the proposed method is elucidated by a presenting a comparison with some numerical methods existing in the open literature. The numerical outcomes shows that the present method is more efficient than the existing ones.</description><subject>collocation method</subject><subject>Collocation methods</subject><subject>fractional derivative</subject><subject>Gegenbauer wavelet</subject><subject>Growth models</subject><subject>Linearization</subject><subject>logistic equation</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>operational matrices</subject><subject>Population growth</subject><subject>quasi‐linearization</subject><subject>Volterra's population model</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQgGELgUQpSDyCJRaWlLMdO8lYVVCQWrHAHF0Sp03lxK2dtCoTj8Az8iSkhJXphvt0Ov2E3DKYMAD-UNc4iQHUGRkxSJKAhZE6JyNgEQQhZ-ElufJ-AwAxY3xEdnO90k2GnXb0gHttdEt3Hfrq-_PLVI1GV31gW9mG1rpd24KW1lFvzb5qVrR0mJ92aOjWbjszwJWzh3ZNa1toQ6uGIs2N9bqg_uhbXV-TixKN1zd_c0zenx7fZs_B4nX-MpsugpwnQgVxwuMsh4hjAkqDVCUXWRSWEjIZcsA4l2GBkIUik7IUhYxypQoUBcNIiqwQY3I33N06u-u0b9ON7Vz_q0-5CpUSjCdRr-4HlTvrvdNlunVVje6YMkhPQdM-aHoK2tNgoIfK6OO_Ll0up7_-B0r6eZg</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Shah, Firdous A.</creator><creator>Irfan, Mohd</creator><creator>Nisar, Kottakkaran S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8461-869X</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-9088-123X</orcidid></search><sort><creationdate>20220515</creationdate><title>Gegenbauer wavelet quasi‐linearization method for solving fractional population growth model in a closed system</title><author>Shah, Firdous A. ; Irfan, Mohd ; Nisar, Kottakkaran S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-8928bc072a906e056f23b74f50b5420a8c54da0b43b55f3d57c66da3d1a753bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>collocation method</topic><topic>Collocation methods</topic><topic>fractional derivative</topic><topic>Gegenbauer wavelet</topic><topic>Growth models</topic><topic>Linearization</topic><topic>logistic equation</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>operational matrices</topic><topic>Population growth</topic><topic>quasi‐linearization</topic><topic>Volterra's population model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Firdous A.</creatorcontrib><creatorcontrib>Irfan, Mohd</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Firdous A.</au><au>Irfan, Mohd</au><au>Nisar, Kottakkaran S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gegenbauer wavelet quasi‐linearization method for solving fractional population growth model in a closed system</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-05-15</date><risdate>2022</risdate><volume>45</volume><issue>7</issue><spage>3605</spage><epage>3623</epage><pages>3605-3623</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this article, a novel collocation method is developed based on Gegenbauer wavelets together with the quasi‐linearization technique to facilitate the solution of population growth model of fractional order in a closed system. The operational matrices of fractional order integration are obtained via block‐pulse functions. The obtained matrices are employed to transform the given time‐fractional population growth model into a non‐linear system of algebraic equations. Then, the quasi‐linearization technique is invoked to convert the underlying equations to a linear system of equations. The performance and accuracy of the proposed method is elucidated by a presenting a comparison with some numerical methods existing in the open literature. The numerical outcomes shows that the present method is more efficient than the existing ones.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8006</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8461-869X</orcidid><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0002-9088-123X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2022-05, Vol.45 (7), p.3605-3623
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2646631297
source Wiley-Blackwell Journals
subjects collocation method
Collocation methods
fractional derivative
Gegenbauer wavelet
Growth models
Linearization
logistic equation
Mathematical models
Numerical methods
operational matrices
Population growth
quasi‐linearization
Volterra's population model
title Gegenbauer wavelet quasi‐linearization method for solving fractional population growth model in a closed system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gegenbauer%20wavelet%20quasi%E2%80%90linearization%20method%20for%20solving%20fractional%20population%20growth%20model%20in%20a%20closed%20system&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shah,%20Firdous%20A.&rft.date=2022-05-15&rft.volume=45&rft.issue=7&rft.spage=3605&rft.epage=3623&rft.pages=3605-3623&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8006&rft_dat=%3Cproquest_cross%3E2646631297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646631297&rft_id=info:pmid/&rfr_iscdi=true