Quantifying quantum correlations in a double cavity–magnon system

In this paper, we study a system consisting of two spatially separated cavities, where each cavity contains a magnon mode of YIG sphere coupled to a microwave cavity mode via a linear beam splitter interaction. The two cavities are driven by two-mode squeezed vacuum field. In (Yu et al. in J. Phys....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2022-04, Vol.76 (4), Article 64
Hauptverfasser: Hidki, Abdelkader, Lakhfif, Abderrahim, El Qars, Jamal, Nassik, Mostafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 76
creator Hidki, Abdelkader
Lakhfif, Abderrahim
El Qars, Jamal
Nassik, Mostafa
description In this paper, we study a system consisting of two spatially separated cavities, where each cavity contains a magnon mode of YIG sphere coupled to a microwave cavity mode via a linear beam splitter interaction. The two cavities are driven by two-mode squeezed vacuum field. In (Yu et al. in J. Phys. B: At. Mol. Opt. Phys. 53:065402, 2020), it has been investigated about the logarithmic negativity as a measure of quantum entanglement between two magnon modes versus various system parameters. Motivated by this, we will look at two different types of quantum correlations (i.e., entanglement and discord) in two-mode Gaussian subsystems (cavity–cavity modes and magnon–magnon modes). We analyze the robustness of these correlations with respect to the physical and environmental parameters—temperature, squeezing and the cavity–magnon coupling—of the two studied subsystems. For this, we use the Gaussian Bures distance to quantify entanglement and the Gaussian geometric discord (GGD) to quantify correlations beyond entanglement. The entanglement of the two bi-mode subsystems proves to be more sensitive to thermal noise. In particular, under the effect of temperature, the magnon–magnon entanglement degrades much more than the cavity–cavity entanglement. In addition, the GGD is found to be more robust—in both subsystems—against thermal noise, and it can be detected even for high values of temperatures. Also, we show that nonzero quantum correlations can be captured even when entanglement vanishes completely in the two studied subsystems. Finally, two different types of entanglement transfer (i.e., light → light and light → matter) have been observed in the studied system. Graphical abstract
doi_str_mv 10.1140/epjd/s10053-022-00377-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646579297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646579297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-81d24cc35bf2d5500ae05d10e9a4c1aac288e22ec841cfc18ed92cc6ecbecbde3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-gwHXcU7SpE2XMniDARF0HdL0dOgwTWeSVujOd_ANfRI7VnQpHDj_4r_AR8glh2vOJSxwtykXkQOohIEQDCDJMqaPyIzLRLIUsvz4V6dwSs5i3ACAUDKdkeVzb31XV0Pt13R_0H1DXRsCbm1Xtz7S2lNLy7Yvtkidfau74fP9o7Fr33oah9hhc05OKruNePHz5-T17vZl-cBWT_ePy5sVcyKVHdO8FNK5RBWVKJUCsAiq5IC5lY5b64TWKAQ6LbmrHNdY5sK5FF0xXonJnFxNvbvQ7nuMndm0ffDjpBkHUpXlIs9GVza5XGhjDFiZXagbGwbDwRyImQMxMxEzIzHzTczoMamnZBwTfo3hr_-_6BeReXUx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646579297</pqid></control><display><type>article</type><title>Quantifying quantum correlations in a double cavity–magnon system</title><source>SpringerLink Journals</source><creator>Hidki, Abdelkader ; Lakhfif, Abderrahim ; El Qars, Jamal ; Nassik, Mostafa</creator><creatorcontrib>Hidki, Abdelkader ; Lakhfif, Abderrahim ; El Qars, Jamal ; Nassik, Mostafa</creatorcontrib><description>In this paper, we study a system consisting of two spatially separated cavities, where each cavity contains a magnon mode of YIG sphere coupled to a microwave cavity mode via a linear beam splitter interaction. The two cavities are driven by two-mode squeezed vacuum field. In (Yu et al. in J. Phys. B: At. Mol. Opt. Phys. 53:065402, 2020), it has been investigated about the logarithmic negativity as a measure of quantum entanglement between two magnon modes versus various system parameters. Motivated by this, we will look at two different types of quantum correlations (i.e., entanglement and discord) in two-mode Gaussian subsystems (cavity–cavity modes and magnon–magnon modes). We analyze the robustness of these correlations with respect to the physical and environmental parameters—temperature, squeezing and the cavity–magnon coupling—of the two studied subsystems. For this, we use the Gaussian Bures distance to quantify entanglement and the Gaussian geometric discord (GGD) to quantify correlations beyond entanglement. The entanglement of the two bi-mode subsystems proves to be more sensitive to thermal noise. In particular, under the effect of temperature, the magnon–magnon entanglement degrades much more than the cavity–cavity entanglement. In addition, the GGD is found to be more robust—in both subsystems—against thermal noise, and it can be detected even for high values of temperatures. Also, we show that nonzero quantum correlations can be captured even when entanglement vanishes completely in the two studied subsystems. Finally, two different types of entanglement transfer (i.e., light → light and light → matter) have been observed in the studied system. Graphical abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/s10053-022-00377-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Coupled modes ; Holes ; Magnons ; Molecular ; Noise sensitivity ; Optical and Plasma Physics ; Parameters ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum entanglement ; Quantum Information Technology ; Quantum Physics ; Regular Article – Quantum Optics ; Spectroscopy/Spectrometry ; Spintronics ; Subsystems ; Temperature effects ; Thermal noise</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2022-04, Vol.76 (4), Article 64</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-81d24cc35bf2d5500ae05d10e9a4c1aac288e22ec841cfc18ed92cc6ecbecbde3</citedby><cites>FETCH-LOGICAL-c264t-81d24cc35bf2d5500ae05d10e9a4c1aac288e22ec841cfc18ed92cc6ecbecbde3</cites><orcidid>0000-0003-2955-021X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/s10053-022-00377-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/s10053-022-00377-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hidki, Abdelkader</creatorcontrib><creatorcontrib>Lakhfif, Abderrahim</creatorcontrib><creatorcontrib>El Qars, Jamal</creatorcontrib><creatorcontrib>Nassik, Mostafa</creatorcontrib><title>Quantifying quantum correlations in a double cavity–magnon system</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>In this paper, we study a system consisting of two spatially separated cavities, where each cavity contains a magnon mode of YIG sphere coupled to a microwave cavity mode via a linear beam splitter interaction. The two cavities are driven by two-mode squeezed vacuum field. In (Yu et al. in J. Phys. B: At. Mol. Opt. Phys. 53:065402, 2020), it has been investigated about the logarithmic negativity as a measure of quantum entanglement between two magnon modes versus various system parameters. Motivated by this, we will look at two different types of quantum correlations (i.e., entanglement and discord) in two-mode Gaussian subsystems (cavity–cavity modes and magnon–magnon modes). We analyze the robustness of these correlations with respect to the physical and environmental parameters—temperature, squeezing and the cavity–magnon coupling—of the two studied subsystems. For this, we use the Gaussian Bures distance to quantify entanglement and the Gaussian geometric discord (GGD) to quantify correlations beyond entanglement. The entanglement of the two bi-mode subsystems proves to be more sensitive to thermal noise. In particular, under the effect of temperature, the magnon–magnon entanglement degrades much more than the cavity–cavity entanglement. In addition, the GGD is found to be more robust—in both subsystems—against thermal noise, and it can be detected even for high values of temperatures. Also, we show that nonzero quantum correlations can be captured even when entanglement vanishes completely in the two studied subsystems. Finally, two different types of entanglement transfer (i.e., light → light and light → matter) have been observed in the studied system. Graphical abstract</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Coupled modes</subject><subject>Holes</subject><subject>Magnons</subject><subject>Molecular</subject><subject>Noise sensitivity</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Regular Article – Quantum Optics</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Subsystems</subject><subject>Temperature effects</subject><subject>Thermal noise</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-gwHXcU7SpE2XMniDARF0HdL0dOgwTWeSVujOd_ANfRI7VnQpHDj_4r_AR8glh2vOJSxwtykXkQOohIEQDCDJMqaPyIzLRLIUsvz4V6dwSs5i3ACAUDKdkeVzb31XV0Pt13R_0H1DXRsCbm1Xtz7S2lNLy7Yvtkidfau74fP9o7Fr33oah9hhc05OKruNePHz5-T17vZl-cBWT_ePy5sVcyKVHdO8FNK5RBWVKJUCsAiq5IC5lY5b64TWKAQ6LbmrHNdY5sK5FF0xXonJnFxNvbvQ7nuMndm0ffDjpBkHUpXlIs9GVza5XGhjDFiZXagbGwbDwRyImQMxMxEzIzHzTczoMamnZBwTfo3hr_-_6BeReXUx</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Hidki, Abdelkader</creator><creator>Lakhfif, Abderrahim</creator><creator>El Qars, Jamal</creator><creator>Nassik, Mostafa</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2955-021X</orcidid></search><sort><creationdate>20220401</creationdate><title>Quantifying quantum correlations in a double cavity–magnon system</title><author>Hidki, Abdelkader ; Lakhfif, Abderrahim ; El Qars, Jamal ; Nassik, Mostafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-81d24cc35bf2d5500ae05d10e9a4c1aac288e22ec841cfc18ed92cc6ecbecbde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Coupled modes</topic><topic>Holes</topic><topic>Magnons</topic><topic>Molecular</topic><topic>Noise sensitivity</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Regular Article – Quantum Optics</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Subsystems</topic><topic>Temperature effects</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidki, Abdelkader</creatorcontrib><creatorcontrib>Lakhfif, Abderrahim</creatorcontrib><creatorcontrib>El Qars, Jamal</creatorcontrib><creatorcontrib>Nassik, Mostafa</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidki, Abdelkader</au><au>Lakhfif, Abderrahim</au><au>El Qars, Jamal</au><au>Nassik, Mostafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying quantum correlations in a double cavity–magnon system</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>76</volume><issue>4</issue><artnum>64</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>In this paper, we study a system consisting of two spatially separated cavities, where each cavity contains a magnon mode of YIG sphere coupled to a microwave cavity mode via a linear beam splitter interaction. The two cavities are driven by two-mode squeezed vacuum field. In (Yu et al. in J. Phys. B: At. Mol. Opt. Phys. 53:065402, 2020), it has been investigated about the logarithmic negativity as a measure of quantum entanglement between two magnon modes versus various system parameters. Motivated by this, we will look at two different types of quantum correlations (i.e., entanglement and discord) in two-mode Gaussian subsystems (cavity–cavity modes and magnon–magnon modes). We analyze the robustness of these correlations with respect to the physical and environmental parameters—temperature, squeezing and the cavity–magnon coupling—of the two studied subsystems. For this, we use the Gaussian Bures distance to quantify entanglement and the Gaussian geometric discord (GGD) to quantify correlations beyond entanglement. The entanglement of the two bi-mode subsystems proves to be more sensitive to thermal noise. In particular, under the effect of temperature, the magnon–magnon entanglement degrades much more than the cavity–cavity entanglement. In addition, the GGD is found to be more robust—in both subsystems—against thermal noise, and it can be detected even for high values of temperatures. Also, we show that nonzero quantum correlations can be captured even when entanglement vanishes completely in the two studied subsystems. Finally, two different types of entanglement transfer (i.e., light → light and light → matter) have been observed in the studied system. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/s10053-022-00377-8</doi><orcidid>https://orcid.org/0000-0003-2955-021X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2022-04, Vol.76 (4), Article 64
issn 1434-6060
1434-6079
language eng
recordid cdi_proquest_journals_2646579297
source SpringerLink Journals
subjects Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Coupled modes
Holes
Magnons
Molecular
Noise sensitivity
Optical and Plasma Physics
Parameters
Physical Chemistry
Physics
Physics and Astronomy
Quantum entanglement
Quantum Information Technology
Quantum Physics
Regular Article – Quantum Optics
Spectroscopy/Spectrometry
Spintronics
Subsystems
Temperature effects
Thermal noise
title Quantifying quantum correlations in a double cavity–magnon system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20quantum%20correlations%20in%20a%20double%20cavity%E2%80%93magnon%20system&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Hidki,%20Abdelkader&rft.date=2022-04-01&rft.volume=76&rft.issue=4&rft.artnum=64&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/s10053-022-00377-8&rft_dat=%3Cproquest_cross%3E2646579297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646579297&rft_id=info:pmid/&rfr_iscdi=true