Growth and characterization of (Ga1−xGdx)2O3 by pulsed laser deposition for wide bandgap applications

Thin film wide bandgap Ga 2 O 3 based alloys are important for applications in high power electronic, gate dielectric, deep UV photonics, spintronics and nuclear detectors. Epitaxial (Ga 1 − x Gd x ) 2 O 3 thin films with varied x were successfully grown on Al 2 O 3 (0001) substrates to tune the mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2022-05, Vol.128 (5), Article 366
Hauptverfasser: Mia, Md Dalim, Samuels, Brian C., Borges, Pablo D., Scolfaro, Luisa, Siddique, Anwar, Saha, Jibesh Kanti, Talukder, Abdul Ahad, Droopad, Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 128
creator Mia, Md Dalim
Samuels, Brian C.
Borges, Pablo D.
Scolfaro, Luisa
Siddique, Anwar
Saha, Jibesh Kanti
Talukder, Abdul Ahad
Droopad, Ravi
description Thin film wide bandgap Ga 2 O 3 based alloys are important for applications in high power electronic, gate dielectric, deep UV photonics, spintronics and nuclear detectors. Epitaxial (Ga 1 − x Gd x ) 2 O 3 thin films with varied x were successfully grown on Al 2 O 3 (0001) substrates to tune the materials properties using variations in the growth parameters. High growth temperatures favor the formation of the monoclinic β- ( Ga 1 − x Gd x ) 2 O 3 phase; the higher the Gd composition, the greater the growth temperature required for high quality crystalline thin films. Incorporation of Gd into Ga 2 O 3 crystal expands the crystal lattice causing peak shift toward lower angle. UV–vis measurements demonstrate a slight red shift of the bandgap (4.99–4.82 eV) in comparison with the pure β-Ga 2 O 3 . Extracted refractive index from surface ellipsometry were in the range of 1.86–1.92. XPS spectroscopy confirmed the presence of Gd 3+ oxidation states. Current voltage measurements demonstrate Gd doping increases the resistivity of the samples. Finally, our findings are confirmed by density functional study.
doi_str_mv 10.1007/s00339-022-05476-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646577438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646577438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2342-b99c4636c086476e4a82ef53ed6869f8243ab14591bc3dafd06da92b458237d03</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yWWGAIOM-OE4-oogGpUheYLcd22lQlDnaqtnwBM5_Il2AaJDa8PFm65z69g9BlSm5TQvK7QAilIiEACclYzhM4QqOU0fjllByjEREsTwoq-Ck6C2FF4mMAI7Qovdv2S6xag_VSeaV765t31Teuxa7G16VKvz4-d6XZ3cCc4mqPu806WIPXKliPje1caA7p2nm8bYzFVSxbqA6rrls3-lAVztFJrSJ38TvH6GX68Dx5TGbz8mlyP0s0UAZJJYRmnHJNCh7PsEwVYOuMWsMLLuoCGFVVyjKRVpoaVRvCjRJQsawAmhtCx-hq6O28e9vY0MuV2_g2rpTAGc_ynNEipmBIae9C8LaWnW9eld_LlMgfoXIQKqNQeRAqIUJ0gEIMtwvr_6r_ob4BQuh5EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646577438</pqid></control><display><type>article</type><title>Growth and characterization of (Ga1−xGdx)2O3 by pulsed laser deposition for wide bandgap applications</title><source>SpringerNature Journals</source><creator>Mia, Md Dalim ; Samuels, Brian C. ; Borges, Pablo D. ; Scolfaro, Luisa ; Siddique, Anwar ; Saha, Jibesh Kanti ; Talukder, Abdul Ahad ; Droopad, Ravi</creator><creatorcontrib>Mia, Md Dalim ; Samuels, Brian C. ; Borges, Pablo D. ; Scolfaro, Luisa ; Siddique, Anwar ; Saha, Jibesh Kanti ; Talukder, Abdul Ahad ; Droopad, Ravi</creatorcontrib><description>Thin film wide bandgap Ga 2 O 3 based alloys are important for applications in high power electronic, gate dielectric, deep UV photonics, spintronics and nuclear detectors. Epitaxial (Ga 1 − x Gd x ) 2 O 3 thin films with varied x were successfully grown on Al 2 O 3 (0001) substrates to tune the materials properties using variations in the growth parameters. High growth temperatures favor the formation of the monoclinic β- ( Ga 1 − x Gd x ) 2 O 3 phase; the higher the Gd composition, the greater the growth temperature required for high quality crystalline thin films. Incorporation of Gd into Ga 2 O 3 crystal expands the crystal lattice causing peak shift toward lower angle. UV–vis measurements demonstrate a slight red shift of the bandgap (4.99–4.82 eV) in comparison with the pure β-Ga 2 O 3 . Extracted refractive index from surface ellipsometry were in the range of 1.86–1.92. XPS spectroscopy confirmed the presence of Gd 3+ oxidation states. Current voltage measurements demonstrate Gd doping increases the resistivity of the samples. Finally, our findings are confirmed by density functional study.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-022-05476-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum oxide ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Crystal lattices ; Doppler effect ; Electrical measurement ; Ellipsometry ; Energy gap ; Gadolinium ; Gallium oxides ; Machines ; Manufacturing ; Material properties ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Oxidation ; Physics ; Physics and Astronomy ; Processes ; Pulsed laser deposition ; Pulsed lasers ; Red shift ; Refractivity ; Spintronics ; Substrates ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2022-05, Vol.128 (5), Article 366</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2342-b99c4636c086476e4a82ef53ed6869f8243ab14591bc3dafd06da92b458237d03</citedby><cites>FETCH-LOGICAL-c2342-b99c4636c086476e4a82ef53ed6869f8243ab14591bc3dafd06da92b458237d03</cites><orcidid>0000-0002-0927-6447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-022-05476-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-022-05476-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mia, Md Dalim</creatorcontrib><creatorcontrib>Samuels, Brian C.</creatorcontrib><creatorcontrib>Borges, Pablo D.</creatorcontrib><creatorcontrib>Scolfaro, Luisa</creatorcontrib><creatorcontrib>Siddique, Anwar</creatorcontrib><creatorcontrib>Saha, Jibesh Kanti</creatorcontrib><creatorcontrib>Talukder, Abdul Ahad</creatorcontrib><creatorcontrib>Droopad, Ravi</creatorcontrib><title>Growth and characterization of (Ga1−xGdx)2O3 by pulsed laser deposition for wide bandgap applications</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Thin film wide bandgap Ga 2 O 3 based alloys are important for applications in high power electronic, gate dielectric, deep UV photonics, spintronics and nuclear detectors. Epitaxial (Ga 1 − x Gd x ) 2 O 3 thin films with varied x were successfully grown on Al 2 O 3 (0001) substrates to tune the materials properties using variations in the growth parameters. High growth temperatures favor the formation of the monoclinic β- ( Ga 1 − x Gd x ) 2 O 3 phase; the higher the Gd composition, the greater the growth temperature required for high quality crystalline thin films. Incorporation of Gd into Ga 2 O 3 crystal expands the crystal lattice causing peak shift toward lower angle. UV–vis measurements demonstrate a slight red shift of the bandgap (4.99–4.82 eV) in comparison with the pure β-Ga 2 O 3 . Extracted refractive index from surface ellipsometry were in the range of 1.86–1.92. XPS spectroscopy confirmed the presence of Gd 3+ oxidation states. Current voltage measurements demonstrate Gd doping increases the resistivity of the samples. Finally, our findings are confirmed by density functional study.</description><subject>Aluminum oxide</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Crystal lattices</subject><subject>Doppler effect</subject><subject>Electrical measurement</subject><subject>Ellipsometry</subject><subject>Energy gap</subject><subject>Gadolinium</subject><subject>Gallium oxides</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Material properties</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Red shift</subject><subject>Refractivity</subject><subject>Spintronics</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwA0yWWGAIOM-OE4-oogGpUheYLcd22lQlDnaqtnwBM5_Il2AaJDa8PFm65z69g9BlSm5TQvK7QAilIiEACclYzhM4QqOU0fjllByjEREsTwoq-Ck6C2FF4mMAI7Qovdv2S6xag_VSeaV765t31Teuxa7G16VKvz4-d6XZ3cCc4mqPu806WIPXKliPje1caA7p2nm8bYzFVSxbqA6rrls3-lAVztFJrSJ38TvH6GX68Dx5TGbz8mlyP0s0UAZJJYRmnHJNCh7PsEwVYOuMWsMLLuoCGFVVyjKRVpoaVRvCjRJQsawAmhtCx-hq6O28e9vY0MuV2_g2rpTAGc_ynNEipmBIae9C8LaWnW9eld_LlMgfoXIQKqNQeRAqIUJ0gEIMtwvr_6r_ob4BQuh5EQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Mia, Md Dalim</creator><creator>Samuels, Brian C.</creator><creator>Borges, Pablo D.</creator><creator>Scolfaro, Luisa</creator><creator>Siddique, Anwar</creator><creator>Saha, Jibesh Kanti</creator><creator>Talukder, Abdul Ahad</creator><creator>Droopad, Ravi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0927-6447</orcidid></search><sort><creationdate>20220501</creationdate><title>Growth and characterization of (Ga1−xGdx)2O3 by pulsed laser deposition for wide bandgap applications</title><author>Mia, Md Dalim ; Samuels, Brian C. ; Borges, Pablo D. ; Scolfaro, Luisa ; Siddique, Anwar ; Saha, Jibesh Kanti ; Talukder, Abdul Ahad ; Droopad, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2342-b99c4636c086476e4a82ef53ed6869f8243ab14591bc3dafd06da92b458237d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Crystal lattices</topic><topic>Doppler effect</topic><topic>Electrical measurement</topic><topic>Ellipsometry</topic><topic>Energy gap</topic><topic>Gadolinium</topic><topic>Gallium oxides</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Material properties</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Red shift</topic><topic>Refractivity</topic><topic>Spintronics</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mia, Md Dalim</creatorcontrib><creatorcontrib>Samuels, Brian C.</creatorcontrib><creatorcontrib>Borges, Pablo D.</creatorcontrib><creatorcontrib>Scolfaro, Luisa</creatorcontrib><creatorcontrib>Siddique, Anwar</creatorcontrib><creatorcontrib>Saha, Jibesh Kanti</creatorcontrib><creatorcontrib>Talukder, Abdul Ahad</creatorcontrib><creatorcontrib>Droopad, Ravi</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mia, Md Dalim</au><au>Samuels, Brian C.</au><au>Borges, Pablo D.</au><au>Scolfaro, Luisa</au><au>Siddique, Anwar</au><au>Saha, Jibesh Kanti</au><au>Talukder, Abdul Ahad</au><au>Droopad, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth and characterization of (Ga1−xGdx)2O3 by pulsed laser deposition for wide bandgap applications</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>128</volume><issue>5</issue><artnum>366</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Thin film wide bandgap Ga 2 O 3 based alloys are important for applications in high power electronic, gate dielectric, deep UV photonics, spintronics and nuclear detectors. Epitaxial (Ga 1 − x Gd x ) 2 O 3 thin films with varied x were successfully grown on Al 2 O 3 (0001) substrates to tune the materials properties using variations in the growth parameters. High growth temperatures favor the formation of the monoclinic β- ( Ga 1 − x Gd x ) 2 O 3 phase; the higher the Gd composition, the greater the growth temperature required for high quality crystalline thin films. Incorporation of Gd into Ga 2 O 3 crystal expands the crystal lattice causing peak shift toward lower angle. UV–vis measurements demonstrate a slight red shift of the bandgap (4.99–4.82 eV) in comparison with the pure β-Ga 2 O 3 . Extracted refractive index from surface ellipsometry were in the range of 1.86–1.92. XPS spectroscopy confirmed the presence of Gd 3+ oxidation states. Current voltage measurements demonstrate Gd doping increases the resistivity of the samples. Finally, our findings are confirmed by density functional study.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-022-05476-2</doi><orcidid>https://orcid.org/0000-0002-0927-6447</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2022-05, Vol.128 (5), Article 366
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2646577438
source SpringerNature Journals
subjects Aluminum oxide
Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Crystal lattices
Doppler effect
Electrical measurement
Ellipsometry
Energy gap
Gadolinium
Gallium oxides
Machines
Manufacturing
Material properties
Materials science
Nanotechnology
Optical and Electronic Materials
Oxidation
Physics
Physics and Astronomy
Processes
Pulsed laser deposition
Pulsed lasers
Red shift
Refractivity
Spintronics
Substrates
Surfaces and Interfaces
Thin Films
title Growth and characterization of (Ga1−xGdx)2O3 by pulsed laser deposition for wide bandgap applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20and%20characterization%20of%20(Ga1%E2%88%92xGdx)2O3%20by%20pulsed%20laser%20deposition%20for%20wide%20bandgap%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Mia,%20Md%20Dalim&rft.date=2022-05-01&rft.volume=128&rft.issue=5&rft.artnum=366&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-022-05476-2&rft_dat=%3Cproquest_cross%3E2646577438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646577438&rft_id=info:pmid/&rfr_iscdi=true