Triple Loss Based Framework for Generalized Zero-Shot Learning

A triple loss based framework for generalized zero-shot learning is presented in this letter. The approach learns a shared latent space for image features and attributes by using aligned variational autoencoders and variants of triplet loss. Then we train a classifier in the latent space. The experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2022/04/01, Vol.E105.D(4), pp.832-835
Hauptverfasser: SHEN, Yaying, LI, Qun, XU, Ding, ZHANG, Ziyi, YANG, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A triple loss based framework for generalized zero-shot learning is presented in this letter. The approach learns a shared latent space for image features and attributes by using aligned variational autoencoders and variants of triplet loss. Then we train a classifier in the latent space. The experimental results demonstrate that the proposed framework achieves great improvement.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2021EDL8079