Triple Loss Based Framework for Generalized Zero-Shot Learning
A triple loss based framework for generalized zero-shot learning is presented in this letter. The approach learns a shared latent space for image features and attributes by using aligned variational autoencoders and variants of triplet loss. Then we train a classifier in the latent space. The experi...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2022/04/01, Vol.E105.D(4), pp.832-835 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A triple loss based framework for generalized zero-shot learning is presented in this letter. The approach learns a shared latent space for image features and attributes by using aligned variational autoencoders and variants of triplet loss. Then we train a classifier in the latent space. The experimental results demonstrate that the proposed framework achieves great improvement. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2021EDL8079 |