A Family of Non-Monotonic Toral Mixing Maps
We establish the mixing property for a family of Lebesgue measure preserving toral maps composed of two piecewise linear shears, the first of which is non-monotonic. The maps serve as a basic model for the ‘stretching and folding’ action in laminar fluid mixing, in particular flows where boundary co...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear science 2022-06, Vol.32 (3), Article 31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of nonlinear science |
container_volume | 32 |
creator | Myers Hill, J. Sturman, R. Wilson, M. C. T. |
description | We establish the mixing property for a family of Lebesgue measure preserving toral maps composed of two piecewise linear shears, the first of which is non-monotonic. The maps serve as a basic model for the ‘stretching and folding’ action in laminar fluid mixing, in particular flows where boundary conditions give rise to non-monotonic flow profiles. The family can be viewed as the parameter space between two well-known systems, Arnold’s Cat Map and a map due to Cerbelli and Giona, both of which possess finite Markov partitions and straightforward to prove mixing properties. However, no such finite Markov partitions appear to exist for the present family, so establishing mixing properties requires a different approach. In particular, we follow a scheme of Katok and Strelcyn, proving strong mixing properties with respect to the Lebesgue measure on two open parameter spaces. Finally, we comment on the challenges in extending these mixing windows and the potential for using the same approach to prove mixing properties in similar systems. |
doi_str_mv | 10.1007/s00332-022-09790-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646148137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646148137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-fa594ef59e30d68171bcaf5862b20f2f70f6b8d0ee8f9d80377099e3bdbb0a993</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoWKd_wKuClxI9-WiTXI7hprDqzbwOaZuMjq6ZSQfu3xut4J0XhwOH530PPAjdEnggAOIxAjBGMdA0SijAcIYywtOJ8FKcowwUk1gqwS_RVYw7ACIKRjN0P8-XZt_1p9y7_NUPuPKDH_3QNfnGB9PnVffZDdu8Mod4jS6c6aO9-d0z9L582iye8fpt9bKYr3HDCB-xM4Xi1hXKMmhLSQSpG-MKWdKagqNOgCtr2YK10qlWAhMCVILrtq7BKMVm6G7qPQT_cbRx1Dt_DEN6qWnJS8IlYSJRdKKa4GMM1ulD6PYmnDQB_S1FT1J0kqJ_pGhIITaFYoKHrQ1_1f-kvgCrI2J3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646148137</pqid></control><display><type>article</type><title>A Family of Non-Monotonic Toral Mixing Maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Myers Hill, J. ; Sturman, R. ; Wilson, M. C. T.</creator><creatorcontrib>Myers Hill, J. ; Sturman, R. ; Wilson, M. C. T.</creatorcontrib><description>We establish the mixing property for a family of Lebesgue measure preserving toral maps composed of two piecewise linear shears, the first of which is non-monotonic. The maps serve as a basic model for the ‘stretching and folding’ action in laminar fluid mixing, in particular flows where boundary conditions give rise to non-monotonic flow profiles. The family can be viewed as the parameter space between two well-known systems, Arnold’s Cat Map and a map due to Cerbelli and Giona, both of which possess finite Markov partitions and straightforward to prove mixing properties. However, no such finite Markov partitions appear to exist for the present family, so establishing mixing properties requires a different approach. In particular, we follow a scheme of Katok and Strelcyn, proving strong mixing properties with respect to the Lebesgue measure on two open parameter spaces. Finally, we comment on the challenges in extending these mixing windows and the potential for using the same approach to prove mixing properties in similar systems.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-022-09790-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Boundary conditions ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Laminar mixing ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Parameters ; Theoretical</subject><ispartof>Journal of nonlinear science, 2022-06, Vol.32 (3), Article 31</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-fa594ef59e30d68171bcaf5862b20f2f70f6b8d0ee8f9d80377099e3bdbb0a993</cites><orcidid>0000-0002-0271-7940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-022-09790-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-022-09790-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Myers Hill, J.</creatorcontrib><creatorcontrib>Sturman, R.</creatorcontrib><creatorcontrib>Wilson, M. C. T.</creatorcontrib><title>A Family of Non-Monotonic Toral Mixing Maps</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>We establish the mixing property for a family of Lebesgue measure preserving toral maps composed of two piecewise linear shears, the first of which is non-monotonic. The maps serve as a basic model for the ‘stretching and folding’ action in laminar fluid mixing, in particular flows where boundary conditions give rise to non-monotonic flow profiles. The family can be viewed as the parameter space between two well-known systems, Arnold’s Cat Map and a map due to Cerbelli and Giona, both of which possess finite Markov partitions and straightforward to prove mixing properties. However, no such finite Markov partitions appear to exist for the present family, so establishing mixing properties requires a different approach. In particular, we follow a scheme of Katok and Strelcyn, proving strong mixing properties with respect to the Lebesgue measure on two open parameter spaces. Finally, we comment on the challenges in extending these mixing windows and the potential for using the same approach to prove mixing properties in similar systems.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Laminar mixing</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><subject>Theoretical</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kF1LwzAUhoMoWKd_wKuClxI9-WiTXI7hprDqzbwOaZuMjq6ZSQfu3xut4J0XhwOH530PPAjdEnggAOIxAjBGMdA0SijAcIYywtOJ8FKcowwUk1gqwS_RVYw7ACIKRjN0P8-XZt_1p9y7_NUPuPKDH_3QNfnGB9PnVffZDdu8Mod4jS6c6aO9-d0z9L582iye8fpt9bKYr3HDCB-xM4Xi1hXKMmhLSQSpG-MKWdKagqNOgCtr2YK10qlWAhMCVILrtq7BKMVm6G7qPQT_cbRx1Dt_DEN6qWnJS8IlYSJRdKKa4GMM1ulD6PYmnDQB_S1FT1J0kqJ_pGhIITaFYoKHrQ1_1f-kvgCrI2J3</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Myers Hill, J.</creator><creator>Sturman, R.</creator><creator>Wilson, M. C. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0271-7940</orcidid></search><sort><creationdate>20220601</creationdate><title>A Family of Non-Monotonic Toral Mixing Maps</title><author>Myers Hill, J. ; Sturman, R. ; Wilson, M. C. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-fa594ef59e30d68171bcaf5862b20f2f70f6b8d0ee8f9d80377099e3bdbb0a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Laminar mixing</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myers Hill, J.</creatorcontrib><creatorcontrib>Sturman, R.</creatorcontrib><creatorcontrib>Wilson, M. C. T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myers Hill, J.</au><au>Sturman, R.</au><au>Wilson, M. C. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Family of Non-Monotonic Toral Mixing Maps</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>3</issue><artnum>31</artnum><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>We establish the mixing property for a family of Lebesgue measure preserving toral maps composed of two piecewise linear shears, the first of which is non-monotonic. The maps serve as a basic model for the ‘stretching and folding’ action in laminar fluid mixing, in particular flows where boundary conditions give rise to non-monotonic flow profiles. The family can be viewed as the parameter space between two well-known systems, Arnold’s Cat Map and a map due to Cerbelli and Giona, both of which possess finite Markov partitions and straightforward to prove mixing properties. However, no such finite Markov partitions appear to exist for the present family, so establishing mixing properties requires a different approach. In particular, we follow a scheme of Katok and Strelcyn, proving strong mixing properties with respect to the Lebesgue measure on two open parameter spaces. Finally, we comment on the challenges in extending these mixing windows and the potential for using the same approach to prove mixing properties in similar systems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-022-09790-0</doi><orcidid>https://orcid.org/0000-0002-0271-7940</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8974 |
ispartof | Journal of nonlinear science, 2022-06, Vol.32 (3), Article 31 |
issn | 0938-8974 1432-1467 |
language | eng |
recordid | cdi_proquest_journals_2646148137 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Boundary conditions Classical Mechanics Economic Theory/Quantitative Economics/Mathematical Methods Laminar mixing Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Parameters Theoretical |
title | A Family of Non-Monotonic Toral Mixing Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Family%20of%20Non-Monotonic%20Toral%20Mixing%20Maps&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Myers%20Hill,%20J.&rft.date=2022-06-01&rft.volume=32&rft.issue=3&rft.artnum=31&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-022-09790-0&rft_dat=%3Cproquest_cross%3E2646148137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646148137&rft_id=info:pmid/&rfr_iscdi=true |