Energy optimization for CAN bus and media controls in electric vehicles using deep learning algorithms

This study offers a neural network-based deep learning method for energy optimization modeling in electric vehicles (EV). The pre-processed driving cycle is transformed into static maps and fed into a neural network for prototype energy optimization for CAN bus and media control in electric vehicles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2022-04, Vol.78 (6), p.8493-8508
Hauptverfasser: Salunkhe, Satish S., Pal, Shelendra, Agrawal, Abhishek, Rai, Ravi, Mole, S. S. Sreeja, Jos, Bos Mathew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8508
container_issue 6
container_start_page 8493
container_title The Journal of supercomputing
container_volume 78
creator Salunkhe, Satish S.
Pal, Shelendra
Agrawal, Abhishek
Rai, Ravi
Mole, S. S. Sreeja
Jos, Bos Mathew
description This study offers a neural network-based deep learning method for energy optimization modeling in electric vehicles (EV). The pre-processed driving cycle is transformed into static maps and fed into a neural network for prototype energy optimization for CAN bus and media control in electric vehicles. The proposed model includes the prediction of battery state-of-charge as well as the consumption of fuel-at-destination. The controller area network (CAN) bus is the most important element in EV, ensuring its protection is the most difficult task. The abnormal messages of the CAN bus are detected using DNN. The suggested DNN model is an integrated triplet network loss which minimizes the length among the anchor sample as well as the positive sample is comparably minimum than the length measured between anchor sample and negative sample. The proposed DNN model is utilized for CAN bus and various media control in electric vehicles for effective performance.
doi_str_mv 10.1007/s11227-021-04186-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646147790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646147790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6a713102a781432858cf20f2182107655cc4506e2c0c974c311e53fa43b504f23</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNazKzLKU-oOhG1yFNk2nKTDImU6H-ekdHcOfqcuB858KH0DWBWwIg7zIhlMoCKCmAk6osxAmaESHZGCt-imZQUygqwek5ush5DwCcSTZDbhVsao449oPv_KcefAzYxYSXi2e8OWSswxZ3dus1NjEMKbYZ-4Bta82QvMEfdudNazM-ZB8avLW2x63VKXwn3TYx-WHX5Ut05nSb7dXvnaO3-9Xr8rFYvzw8LRfrwjBSD0WpJWEEqJYV4YxWojKOgqOkogRkKYQxXEBpqQFTSz5CxArmNGcbAdxRNkc3026f4vvB5kHt4yGF8aWiJS8Jl7KGsUWnlkkx52Sd6pPvdDoqAurbp5p8qtGn-vGpxAixCcpjOTQ2_U3_Q30BvmV3dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646147790</pqid></control><display><type>article</type><title>Energy optimization for CAN bus and media controls in electric vehicles using deep learning algorithms</title><source>SpringerNature Journals</source><creator>Salunkhe, Satish S. ; Pal, Shelendra ; Agrawal, Abhishek ; Rai, Ravi ; Mole, S. S. Sreeja ; Jos, Bos Mathew</creator><creatorcontrib>Salunkhe, Satish S. ; Pal, Shelendra ; Agrawal, Abhishek ; Rai, Ravi ; Mole, S. S. Sreeja ; Jos, Bos Mathew</creatorcontrib><description>This study offers a neural network-based deep learning method for energy optimization modeling in electric vehicles (EV). The pre-processed driving cycle is transformed into static maps and fed into a neural network for prototype energy optimization for CAN bus and media control in electric vehicles. The proposed model includes the prediction of battery state-of-charge as well as the consumption of fuel-at-destination. The controller area network (CAN) bus is the most important element in EV, ensuring its protection is the most difficult task. The abnormal messages of the CAN bus are detected using DNN. The suggested DNN model is an integrated triplet network loss which minimizes the length among the anchor sample as well as the positive sample is comparably minimum than the length measured between anchor sample and negative sample. The proposed DNN model is utilized for CAN bus and various media control in electric vehicles for effective performance.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-021-04186-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Buses (vehicles) ; Compilers ; Computer Science ; Controller area network ; Deep learning ; Electric vehicles ; Interpreters ; Machine learning ; Machine learning in Intelligent Autonomous Systems ; Neural networks ; Optimization ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2022-04, Vol.78 (6), p.8493-8508</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6a713102a781432858cf20f2182107655cc4506e2c0c974c311e53fa43b504f23</citedby><cites>FETCH-LOGICAL-c319t-6a713102a781432858cf20f2182107655cc4506e2c0c974c311e53fa43b504f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-021-04186-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-021-04186-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Salunkhe, Satish S.</creatorcontrib><creatorcontrib>Pal, Shelendra</creatorcontrib><creatorcontrib>Agrawal, Abhishek</creatorcontrib><creatorcontrib>Rai, Ravi</creatorcontrib><creatorcontrib>Mole, S. S. Sreeja</creatorcontrib><creatorcontrib>Jos, Bos Mathew</creatorcontrib><title>Energy optimization for CAN bus and media controls in electric vehicles using deep learning algorithms</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>This study offers a neural network-based deep learning method for energy optimization modeling in electric vehicles (EV). The pre-processed driving cycle is transformed into static maps and fed into a neural network for prototype energy optimization for CAN bus and media control in electric vehicles. The proposed model includes the prediction of battery state-of-charge as well as the consumption of fuel-at-destination. The controller area network (CAN) bus is the most important element in EV, ensuring its protection is the most difficult task. The abnormal messages of the CAN bus are detected using DNN. The suggested DNN model is an integrated triplet network loss which minimizes the length among the anchor sample as well as the positive sample is comparably minimum than the length measured between anchor sample and negative sample. The proposed DNN model is utilized for CAN bus and various media control in electric vehicles for effective performance.</description><subject>Algorithms</subject><subject>Buses (vehicles)</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Controller area network</subject><subject>Deep learning</subject><subject>Electric vehicles</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Machine learning in Intelligent Autonomous Systems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNazKzLKU-oOhG1yFNk2nKTDImU6H-ekdHcOfqcuB858KH0DWBWwIg7zIhlMoCKCmAk6osxAmaESHZGCt-imZQUygqwek5ush5DwCcSTZDbhVsao449oPv_KcefAzYxYSXi2e8OWSswxZ3dus1NjEMKbYZ-4Bta82QvMEfdudNazM-ZB8avLW2x63VKXwn3TYx-WHX5Ut05nSb7dXvnaO3-9Xr8rFYvzw8LRfrwjBSD0WpJWEEqJYV4YxWojKOgqOkogRkKYQxXEBpqQFTSz5CxArmNGcbAdxRNkc3026f4vvB5kHt4yGF8aWiJS8Jl7KGsUWnlkkx52Sd6pPvdDoqAurbp5p8qtGn-vGpxAixCcpjOTQ2_U3_Q30BvmV3dg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Salunkhe, Satish S.</creator><creator>Pal, Shelendra</creator><creator>Agrawal, Abhishek</creator><creator>Rai, Ravi</creator><creator>Mole, S. S. Sreeja</creator><creator>Jos, Bos Mathew</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Energy optimization for CAN bus and media controls in electric vehicles using deep learning algorithms</title><author>Salunkhe, Satish S. ; Pal, Shelendra ; Agrawal, Abhishek ; Rai, Ravi ; Mole, S. S. Sreeja ; Jos, Bos Mathew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6a713102a781432858cf20f2182107655cc4506e2c0c974c311e53fa43b504f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Buses (vehicles)</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Controller area network</topic><topic>Deep learning</topic><topic>Electric vehicles</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Machine learning in Intelligent Autonomous Systems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salunkhe, Satish S.</creatorcontrib><creatorcontrib>Pal, Shelendra</creatorcontrib><creatorcontrib>Agrawal, Abhishek</creatorcontrib><creatorcontrib>Rai, Ravi</creatorcontrib><creatorcontrib>Mole, S. S. Sreeja</creatorcontrib><creatorcontrib>Jos, Bos Mathew</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salunkhe, Satish S.</au><au>Pal, Shelendra</au><au>Agrawal, Abhishek</au><au>Rai, Ravi</au><au>Mole, S. S. Sreeja</au><au>Jos, Bos Mathew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy optimization for CAN bus and media controls in electric vehicles using deep learning algorithms</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>78</volume><issue>6</issue><spage>8493</spage><epage>8508</epage><pages>8493-8508</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>This study offers a neural network-based deep learning method for energy optimization modeling in electric vehicles (EV). The pre-processed driving cycle is transformed into static maps and fed into a neural network for prototype energy optimization for CAN bus and media control in electric vehicles. The proposed model includes the prediction of battery state-of-charge as well as the consumption of fuel-at-destination. The controller area network (CAN) bus is the most important element in EV, ensuring its protection is the most difficult task. The abnormal messages of the CAN bus are detected using DNN. The suggested DNN model is an integrated triplet network loss which minimizes the length among the anchor sample as well as the positive sample is comparably minimum than the length measured between anchor sample and negative sample. The proposed DNN model is utilized for CAN bus and various media control in electric vehicles for effective performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-021-04186-5</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2022-04, Vol.78 (6), p.8493-8508
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2646147790
source SpringerNature Journals
subjects Algorithms
Buses (vehicles)
Compilers
Computer Science
Controller area network
Deep learning
Electric vehicles
Interpreters
Machine learning
Machine learning in Intelligent Autonomous Systems
Neural networks
Optimization
Processor Architectures
Programming Languages
title Energy optimization for CAN bus and media controls in electric vehicles using deep learning algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20optimization%20for%20CAN%20bus%20and%20media%20controls%20in%20electric%20vehicles%20using%20deep%20learning%20algorithms&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Salunkhe,%20Satish%20S.&rft.date=2022-04-01&rft.volume=78&rft.issue=6&rft.spage=8493&rft.epage=8508&rft.pages=8493-8508&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-021-04186-5&rft_dat=%3Cproquest_cross%3E2646147790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646147790&rft_id=info:pmid/&rfr_iscdi=true