Rapid finite-fault analysis of large Mexico earthquakes using teleseismic P waves

We propose a rapid, finite-fault inversion procedure to derive first-order estimates of the coseismic slip following large Mw > 7 earthquakes in Mexico using teleseismic P waves obtained in near real time. The procedure uses kinematic fault parameters and waveform properties prescribed based on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of seismology 2022-04, Vol.26 (2), p.333-342
Hauptverfasser: Mendoza, C., Martínez-López, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue 2
container_start_page 333
container_title Journal of seismology
container_volume 26
creator Mendoza, C.
Martínez-López, M. R.
description We propose a rapid, finite-fault inversion procedure to derive first-order estimates of the coseismic slip following large Mw > 7 earthquakes in Mexico using teleseismic P waves obtained in near real time. The procedure uses kinematic fault parameters and waveform properties prescribed based on the magnitude of the event. Two consecutive inversions are performed, one for each of the two nodal planes in the earthquake source mechanism, allowing an automated analysis of the P-wave dataset with minimal manual intervention. Following the inversion process, the appropriate slip model is selected based on seismotectonic considerations in the earthquake source region. The inversion procedure was applied to the Mw 7 Acapulco subduction earthquake of 8 September 2021 using the source parameters posted online by the U.S. Geological Survey (USGS), resulting in the derivation of a preliminary, first-order source model within 1 h after the event. The slip model shows a single source region similar to the rupture area observed by the USGS using body- and surface-wave records. We also conducted a rapid analysis of the teleseismic P waves available for the Mw 8.2 normal-faulting Chiapas earthquake of 8 September 2017 and recovered a slip model comparable to the finite-fault model obtained by the USGS for that event. For both earthquakes, the time required for waveform retrieval and analysis was less than 5 min, indicating that the procedure can be used to derive timely, preliminary slip models for large Mexico events that would be useful for earthquake early alerting and post-earthquake response.
doi_str_mv 10.1007/s10950-022-10083-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646017159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646017159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c250ffe0817f0d6929df3672a383d8bec2828d2a1781080c90101b6695117e8d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQm6cwkSym-oOIDBXchnbmpqdNOm8yo8--NjuDOzX1xzuHyEXLM4ZQDFGeRg86AgRAs7UqyfoeMeFZIlsrLbpplOk7yid4nBzEuAUArLUfk4dFufEWdX_sWmbNd3VK7tnUffaSNo7UNC6S3-OnLhqIN7eu2s28YaRf9ekFbrDGijytf0nv6Yd8xHpI9Z-uIR799TJ4vL56m12x2d3UzPZ-xUnLdslJk4ByC4oWDKtdCV07mhbDp0UrNsRRKqEpYXigOCkoNHPg8z3XGeYGqkmNyMuRuQrPtMLZm2XQhvR6NyCc58IJnOqnEoCpDE2NAZzbBr2zoDQfzjc4M6ExCZ37QmT6Z5GCKSbxeYPiL_sf1BcMacVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646017159</pqid></control><display><type>article</type><title>Rapid finite-fault analysis of large Mexico earthquakes using teleseismic P waves</title><source>SpringerLink Journals</source><creator>Mendoza, C. ; Martínez-López, M. R.</creator><creatorcontrib>Mendoza, C. ; Martínez-López, M. R.</creatorcontrib><description>We propose a rapid, finite-fault inversion procedure to derive first-order estimates of the coseismic slip following large Mw &gt; 7 earthquakes in Mexico using teleseismic P waves obtained in near real time. The procedure uses kinematic fault parameters and waveform properties prescribed based on the magnitude of the event. Two consecutive inversions are performed, one for each of the two nodal planes in the earthquake source mechanism, allowing an automated analysis of the P-wave dataset with minimal manual intervention. Following the inversion process, the appropriate slip model is selected based on seismotectonic considerations in the earthquake source region. The inversion procedure was applied to the Mw 7 Acapulco subduction earthquake of 8 September 2021 using the source parameters posted online by the U.S. Geological Survey (USGS), resulting in the derivation of a preliminary, first-order source model within 1 h after the event. The slip model shows a single source region similar to the rupture area observed by the USGS using body- and surface-wave records. We also conducted a rapid analysis of the teleseismic P waves available for the Mw 8.2 normal-faulting Chiapas earthquake of 8 September 2017 and recovered a slip model comparable to the finite-fault model obtained by the USGS for that event. For both earthquakes, the time required for waveform retrieval and analysis was less than 5 min, indicating that the procedure can be used to derive timely, preliminary slip models for large Mexico events that would be useful for earthquake early alerting and post-earthquake response.</description><identifier>ISSN: 1383-4649</identifier><identifier>EISSN: 1573-157X</identifier><identifier>DOI: 10.1007/s10950-022-10083-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Elastic waves ; Fault lines ; Geological faults ; Geological surveys ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Inversions ; Mathematical models ; Modelling ; Original Article ; P waves ; Parameters ; Procedures ; Seismic activity ; Seismic response ; Seismology ; Slip ; Structural Geology ; Subduction ; Subduction (geology) ; Surveying ; Wave data ; Waveforms</subject><ispartof>Journal of seismology, 2022-04, Vol.26 (2), p.333-342</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c250ffe0817f0d6929df3672a383d8bec2828d2a1781080c90101b6695117e8d3</citedby><cites>FETCH-LOGICAL-c319t-c250ffe0817f0d6929df3672a383d8bec2828d2a1781080c90101b6695117e8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10950-022-10083-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10950-022-10083-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mendoza, C.</creatorcontrib><creatorcontrib>Martínez-López, M. R.</creatorcontrib><title>Rapid finite-fault analysis of large Mexico earthquakes using teleseismic P waves</title><title>Journal of seismology</title><addtitle>J Seismol</addtitle><description>We propose a rapid, finite-fault inversion procedure to derive first-order estimates of the coseismic slip following large Mw &gt; 7 earthquakes in Mexico using teleseismic P waves obtained in near real time. The procedure uses kinematic fault parameters and waveform properties prescribed based on the magnitude of the event. Two consecutive inversions are performed, one for each of the two nodal planes in the earthquake source mechanism, allowing an automated analysis of the P-wave dataset with minimal manual intervention. Following the inversion process, the appropriate slip model is selected based on seismotectonic considerations in the earthquake source region. The inversion procedure was applied to the Mw 7 Acapulco subduction earthquake of 8 September 2021 using the source parameters posted online by the U.S. Geological Survey (USGS), resulting in the derivation of a preliminary, first-order source model within 1 h after the event. The slip model shows a single source region similar to the rupture area observed by the USGS using body- and surface-wave records. We also conducted a rapid analysis of the teleseismic P waves available for the Mw 8.2 normal-faulting Chiapas earthquake of 8 September 2017 and recovered a slip model comparable to the finite-fault model obtained by the USGS for that event. For both earthquakes, the time required for waveform retrieval and analysis was less than 5 min, indicating that the procedure can be used to derive timely, preliminary slip models for large Mexico events that would be useful for earthquake early alerting and post-earthquake response.</description><subject>Analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Elastic waves</subject><subject>Fault lines</subject><subject>Geological faults</subject><subject>Geological surveys</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Inversions</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Original Article</subject><subject>P waves</subject><subject>Parameters</subject><subject>Procedures</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Seismology</subject><subject>Slip</subject><subject>Structural Geology</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Surveying</subject><subject>Wave data</subject><subject>Waveforms</subject><issn>1383-4649</issn><issn>1573-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQm6cwkSym-oOIDBXchnbmpqdNOm8yo8--NjuDOzX1xzuHyEXLM4ZQDFGeRg86AgRAs7UqyfoeMeFZIlsrLbpplOk7yid4nBzEuAUArLUfk4dFufEWdX_sWmbNd3VK7tnUffaSNo7UNC6S3-OnLhqIN7eu2s28YaRf9ekFbrDGijytf0nv6Yd8xHpI9Z-uIR799TJ4vL56m12x2d3UzPZ-xUnLdslJk4ByC4oWDKtdCV07mhbDp0UrNsRRKqEpYXigOCkoNHPg8z3XGeYGqkmNyMuRuQrPtMLZm2XQhvR6NyCc58IJnOqnEoCpDE2NAZzbBr2zoDQfzjc4M6ExCZ37QmT6Z5GCKSbxeYPiL_sf1BcMacVs</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Mendoza, C.</creator><creator>Martínez-López, M. R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20220401</creationdate><title>Rapid finite-fault analysis of large Mexico earthquakes using teleseismic P waves</title><author>Mendoza, C. ; Martínez-López, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c250ffe0817f0d6929df3672a383d8bec2828d2a1781080c90101b6695117e8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Elastic waves</topic><topic>Fault lines</topic><topic>Geological faults</topic><topic>Geological surveys</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Inversions</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Original Article</topic><topic>P waves</topic><topic>Parameters</topic><topic>Procedures</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Seismology</topic><topic>Slip</topic><topic>Structural Geology</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Surveying</topic><topic>Wave data</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendoza, C.</creatorcontrib><creatorcontrib>Martínez-López, M. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of seismology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendoza, C.</au><au>Martínez-López, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid finite-fault analysis of large Mexico earthquakes using teleseismic P waves</atitle><jtitle>Journal of seismology</jtitle><stitle>J Seismol</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>26</volume><issue>2</issue><spage>333</spage><epage>342</epage><pages>333-342</pages><issn>1383-4649</issn><eissn>1573-157X</eissn><abstract>We propose a rapid, finite-fault inversion procedure to derive first-order estimates of the coseismic slip following large Mw &gt; 7 earthquakes in Mexico using teleseismic P waves obtained in near real time. The procedure uses kinematic fault parameters and waveform properties prescribed based on the magnitude of the event. Two consecutive inversions are performed, one for each of the two nodal planes in the earthquake source mechanism, allowing an automated analysis of the P-wave dataset with minimal manual intervention. Following the inversion process, the appropriate slip model is selected based on seismotectonic considerations in the earthquake source region. The inversion procedure was applied to the Mw 7 Acapulco subduction earthquake of 8 September 2021 using the source parameters posted online by the U.S. Geological Survey (USGS), resulting in the derivation of a preliminary, first-order source model within 1 h after the event. The slip model shows a single source region similar to the rupture area observed by the USGS using body- and surface-wave records. We also conducted a rapid analysis of the teleseismic P waves available for the Mw 8.2 normal-faulting Chiapas earthquake of 8 September 2017 and recovered a slip model comparable to the finite-fault model obtained by the USGS for that event. For both earthquakes, the time required for waveform retrieval and analysis was less than 5 min, indicating that the procedure can be used to derive timely, preliminary slip models for large Mexico events that would be useful for earthquake early alerting and post-earthquake response.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10950-022-10083-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-4649
ispartof Journal of seismology, 2022-04, Vol.26 (2), p.333-342
issn 1383-4649
1573-157X
language eng
recordid cdi_proquest_journals_2646017159
source SpringerLink Journals
subjects Analysis
Earth and Environmental Science
Earth Sciences
Earthquakes
Elastic waves
Fault lines
Geological faults
Geological surveys
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Inversions
Mathematical models
Modelling
Original Article
P waves
Parameters
Procedures
Seismic activity
Seismic response
Seismology
Slip
Structural Geology
Subduction
Subduction (geology)
Surveying
Wave data
Waveforms
title Rapid finite-fault analysis of large Mexico earthquakes using teleseismic P waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20finite-fault%20analysis%20of%20large%20Mexico%20earthquakes%20using%20teleseismic%20P%20waves&rft.jtitle=Journal%20of%20seismology&rft.au=Mendoza,%20C.&rft.date=2022-04-01&rft.volume=26&rft.issue=2&rft.spage=333&rft.epage=342&rft.pages=333-342&rft.issn=1383-4649&rft.eissn=1573-157X&rft_id=info:doi/10.1007/s10950-022-10083-y&rft_dat=%3Cproquest_cross%3E2646017159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646017159&rft_id=info:pmid/&rfr_iscdi=true