Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification
Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial int...
Gespeichert in:
Veröffentlicht in: | Computers, materials & continua materials & continua, 2022, Vol.72 (2), p.2859-2875 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2875 |
---|---|
container_issue | 2 |
container_start_page | 2859 |
container_title | Computers, materials & continua |
container_volume | 72 |
creator | A. Malibari, Areej Ben Haj Hassine, Siwar Motwakel, Abdelwahed Ahmed Hamza, Manar |
description | Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection technique. Moreover, the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values. In order to showcase the enhanced classification performance of the MDL-BADDC technique, a wide range of simulations take place on three benchmarks biomedical datasets. The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods. |
doi_str_mv | 10.32604/cmc.2022.026338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646011202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646011202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-3fe680ec78cb099236f8e682059b616ed17061161ded5715b27c9426bedcdf103</originalsourceid><addsrcrecordid>eNpNkM1PwzAMxSMEEmNw5xiJc4eTtGl7HBtf0hAXOEdp4m4Z_SLpNPHfk20cuPhZT8-2_CPklsFMcAnpvWnNjAPnM-BSiOKMTFiWyoRzLs__9ZfkKoQtgJCihAn5esNRb3DnXRidCXTvxg1dIg50hdp3rlvTx3bo9-jR0gfXt2id0Q2djxv0fTDNobpAly6gDhhVr7ujoztLF40OwdVxYnR9d00uat0EvPnTKfl8evxYvCSr9-fXxXyVGJ6KMRE1ygLQ5IWpoCy5kHURHQ5ZWUkm0bIcJGOSWbRZzrKK56ZMuazQGlszEFNyd9o7-P57h2FU237nu3hScZlKYCxyiik4pUz8IHis1eBdq_2PYqCOSFVEqg5I1Qmp-AXgWmrz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646011202</pqid></control><display><type>article</type><title>Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>A. Malibari, Areej ; Ben Haj Hassine, Siwar ; Motwakel, Abdelwahed ; Ahmed Hamza, Manar</creator><creatorcontrib>A. Malibari, Areej ; Ben Haj Hassine, Siwar ; Motwakel, Abdelwahed ; Ahmed Hamza, Manar</creatorcontrib><description>Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection technique. Moreover, the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values. In order to showcase the enhanced classification performance of the MDL-BADDC technique, a wide range of simulations take place on three benchmarks biomedical datasets. The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2022.026338</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Artificial intelligence ; Atherosclerosis ; Classification ; Deep learning ; Diagnosis ; Feature selection ; Heuristic methods ; Krill ; Machine learning ; Mathematical models ; Medical diagnosis ; Medical research ; Parameters ; Tuning</subject><ispartof>Computers, materials & continua, 2022, Vol.72 (2), p.2859-2875</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-3fe680ec78cb099236f8e682059b616ed17061161ded5715b27c9426bedcdf103</citedby><cites>FETCH-LOGICAL-c243t-3fe680ec78cb099236f8e682059b616ed17061161ded5715b27c9426bedcdf103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>A. Malibari, Areej</creatorcontrib><creatorcontrib>Ben Haj Hassine, Siwar</creatorcontrib><creatorcontrib>Motwakel, Abdelwahed</creatorcontrib><creatorcontrib>Ahmed Hamza, Manar</creatorcontrib><title>Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification</title><title>Computers, materials & continua</title><description>Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection technique. Moreover, the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values. In order to showcase the enhanced classification performance of the MDL-BADDC technique, a wide range of simulations take place on three benchmarks biomedical datasets. The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Atherosclerosis</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Feature selection</subject><subject>Heuristic methods</subject><subject>Krill</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical research</subject><subject>Parameters</subject><subject>Tuning</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1PwzAMxSMEEmNw5xiJc4eTtGl7HBtf0hAXOEdp4m4Z_SLpNPHfk20cuPhZT8-2_CPklsFMcAnpvWnNjAPnM-BSiOKMTFiWyoRzLs__9ZfkKoQtgJCihAn5esNRb3DnXRidCXTvxg1dIg50hdp3rlvTx3bo9-jR0gfXt2id0Q2djxv0fTDNobpAly6gDhhVr7ujoztLF40OwdVxYnR9d00uat0EvPnTKfl8evxYvCSr9-fXxXyVGJ6KMRE1ygLQ5IWpoCy5kHURHQ5ZWUkm0bIcJGOSWbRZzrKK56ZMuazQGlszEFNyd9o7-P57h2FU237nu3hScZlKYCxyiik4pUz8IHis1eBdq_2PYqCOSFVEqg5I1Qmp-AXgWmrz</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A. Malibari, Areej</creator><creator>Ben Haj Hassine, Siwar</creator><creator>Motwakel, Abdelwahed</creator><creator>Ahmed Hamza, Manar</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification</title><author>A. Malibari, Areej ; Ben Haj Hassine, Siwar ; Motwakel, Abdelwahed ; Ahmed Hamza, Manar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-3fe680ec78cb099236f8e682059b616ed17061161ded5715b27c9426bedcdf103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Atherosclerosis</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Feature selection</topic><topic>Heuristic methods</topic><topic>Krill</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical research</topic><topic>Parameters</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>A. Malibari, Areej</creatorcontrib><creatorcontrib>Ben Haj Hassine, Siwar</creatorcontrib><creatorcontrib>Motwakel, Abdelwahed</creatorcontrib><creatorcontrib>Ahmed Hamza, Manar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials & continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A. Malibari, Areej</au><au>Ben Haj Hassine, Siwar</au><au>Motwakel, Abdelwahed</au><au>Ahmed Hamza, Manar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification</atitle><jtitle>Computers, materials & continua</jtitle><date>2022</date><risdate>2022</risdate><volume>72</volume><issue>2</issue><spage>2859</spage><epage>2875</epage><pages>2859-2875</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection technique. Moreover, the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values. In order to showcase the enhanced classification performance of the MDL-BADDC technique, a wide range of simulations take place on three benchmarks biomedical datasets. The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2022.026338</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2226 |
ispartof | Computers, materials & continua, 2022, Vol.72 (2), p.2859-2875 |
issn | 1546-2226 1546-2218 1546-2226 |
language | eng |
recordid | cdi_proquest_journals_2646011202 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Atherosclerosis Classification Deep learning Diagnosis Feature selection Heuristic methods Krill Machine learning Mathematical models Medical diagnosis Medical research Parameters Tuning |
title | Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metaheuristics%20with%20Deep%20Learning%20Empowered%20Biomedical%20Atherosclerosis%20Disease%20Diagnosis%20and%20Classification&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=A.%20Malibari,%20Areej&rft.date=2022&rft.volume=72&rft.issue=2&rft.spage=2859&rft.epage=2875&rft.pages=2859-2875&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2022.026338&rft_dat=%3Cproquest_cross%3E2646011202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646011202&rft_id=info:pmid/&rfr_iscdi=true |