Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification

Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2022, Vol.72 (2), p.2859-2875
Hauptverfasser: A. Malibari, Areej, Ben Haj Hassine, Siwar, Motwakel, Abdelwahed, Ahmed Hamza, Manar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2875
container_issue 2
container_start_page 2859
container_title Computers, materials & continua
container_volume 72
creator A. Malibari, Areej
Ben Haj Hassine, Siwar
Motwakel, Abdelwahed
Ahmed Hamza, Manar
description Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection technique. Moreover, the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values. In order to showcase the enhanced classification performance of the MDL-BADDC technique, a wide range of simulations take place on three benchmarks biomedical datasets. The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.
doi_str_mv 10.32604/cmc.2022.026338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646011202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646011202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-3fe680ec78cb099236f8e682059b616ed17061161ded5715b27c9426bedcdf103</originalsourceid><addsrcrecordid>eNpNkM1PwzAMxSMEEmNw5xiJc4eTtGl7HBtf0hAXOEdp4m4Z_SLpNPHfk20cuPhZT8-2_CPklsFMcAnpvWnNjAPnM-BSiOKMTFiWyoRzLs__9ZfkKoQtgJCihAn5esNRb3DnXRidCXTvxg1dIg50hdp3rlvTx3bo9-jR0gfXt2id0Q2djxv0fTDNobpAly6gDhhVr7ujoztLF40OwdVxYnR9d00uat0EvPnTKfl8evxYvCSr9-fXxXyVGJ6KMRE1ygLQ5IWpoCy5kHURHQ5ZWUkm0bIcJGOSWbRZzrKK56ZMuazQGlszEFNyd9o7-P57h2FU237nu3hScZlKYCxyiik4pUz8IHis1eBdq_2PYqCOSFVEqg5I1Qmp-AXgWmrz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646011202</pqid></control><display><type>article</type><title>Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>A. Malibari, Areej ; Ben Haj Hassine, Siwar ; Motwakel, Abdelwahed ; Ahmed Hamza, Manar</creator><creatorcontrib>A. Malibari, Areej ; Ben Haj Hassine, Siwar ; Motwakel, Abdelwahed ; Ahmed Hamza, Manar</creatorcontrib><description>Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection technique. Moreover, the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values. In order to showcase the enhanced classification performance of the MDL-BADDC technique, a wide range of simulations take place on three benchmarks biomedical datasets. The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2022.026338</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Artificial intelligence ; Atherosclerosis ; Classification ; Deep learning ; Diagnosis ; Feature selection ; Heuristic methods ; Krill ; Machine learning ; Mathematical models ; Medical diagnosis ; Medical research ; Parameters ; Tuning</subject><ispartof>Computers, materials &amp; continua, 2022, Vol.72 (2), p.2859-2875</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-3fe680ec78cb099236f8e682059b616ed17061161ded5715b27c9426bedcdf103</citedby><cites>FETCH-LOGICAL-c243t-3fe680ec78cb099236f8e682059b616ed17061161ded5715b27c9426bedcdf103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>A. Malibari, Areej</creatorcontrib><creatorcontrib>Ben Haj Hassine, Siwar</creatorcontrib><creatorcontrib>Motwakel, Abdelwahed</creatorcontrib><creatorcontrib>Ahmed Hamza, Manar</creatorcontrib><title>Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification</title><title>Computers, materials &amp; continua</title><description>Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection technique. Moreover, the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values. In order to showcase the enhanced classification performance of the MDL-BADDC technique, a wide range of simulations take place on three benchmarks biomedical datasets. The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Atherosclerosis</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Feature selection</subject><subject>Heuristic methods</subject><subject>Krill</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical research</subject><subject>Parameters</subject><subject>Tuning</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1PwzAMxSMEEmNw5xiJc4eTtGl7HBtf0hAXOEdp4m4Z_SLpNPHfk20cuPhZT8-2_CPklsFMcAnpvWnNjAPnM-BSiOKMTFiWyoRzLs__9ZfkKoQtgJCihAn5esNRb3DnXRidCXTvxg1dIg50hdp3rlvTx3bo9-jR0gfXt2id0Q2djxv0fTDNobpAly6gDhhVr7ujoztLF40OwdVxYnR9d00uat0EvPnTKfl8evxYvCSr9-fXxXyVGJ6KMRE1ygLQ5IWpoCy5kHURHQ5ZWUkm0bIcJGOSWbRZzrKK56ZMuazQGlszEFNyd9o7-P57h2FU237nu3hScZlKYCxyiik4pUz8IHis1eBdq_2PYqCOSFVEqg5I1Qmp-AXgWmrz</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A. Malibari, Areej</creator><creator>Ben Haj Hassine, Siwar</creator><creator>Motwakel, Abdelwahed</creator><creator>Ahmed Hamza, Manar</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification</title><author>A. Malibari, Areej ; Ben Haj Hassine, Siwar ; Motwakel, Abdelwahed ; Ahmed Hamza, Manar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-3fe680ec78cb099236f8e682059b616ed17061161ded5715b27c9426bedcdf103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Atherosclerosis</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Feature selection</topic><topic>Heuristic methods</topic><topic>Krill</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical research</topic><topic>Parameters</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>A. Malibari, Areej</creatorcontrib><creatorcontrib>Ben Haj Hassine, Siwar</creatorcontrib><creatorcontrib>Motwakel, Abdelwahed</creatorcontrib><creatorcontrib>Ahmed Hamza, Manar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A. Malibari, Areej</au><au>Ben Haj Hassine, Siwar</au><au>Motwakel, Abdelwahed</au><au>Ahmed Hamza, Manar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2022</date><risdate>2022</risdate><volume>72</volume><issue>2</issue><spage>2859</spage><epage>2875</epage><pages>2859-2875</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection technique. Moreover, the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values. In order to showcase the enhanced classification performance of the MDL-BADDC technique, a wide range of simulations take place on three benchmarks biomedical datasets. The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2022.026338</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2022, Vol.72 (2), p.2859-2875
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2646011202
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Atherosclerosis
Classification
Deep learning
Diagnosis
Feature selection
Heuristic methods
Krill
Machine learning
Mathematical models
Medical diagnosis
Medical research
Parameters
Tuning
title Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metaheuristics%20with%20Deep%20Learning%20Empowered%20Biomedical%20Atherosclerosis%20Disease%20Diagnosis%20and%20Classification&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=A.%20Malibari,%20Areej&rft.date=2022&rft.volume=72&rft.issue=2&rft.spage=2859&rft.epage=2875&rft.pages=2859-2875&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2022.026338&rft_dat=%3Cproquest_cross%3E2646011202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646011202&rft_id=info:pmid/&rfr_iscdi=true