Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images
Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cance...
Gespeichert in:
Veröffentlicht in: | Computers, materials & continua materials & continua, 2022, Vol.72 (2), p.3799-3813 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3813 |
---|---|
container_issue | 2 |
container_start_page | 3799 |
container_title | Computers, materials & continua |
container_volume | 72 |
creator | A. Malibari, Areej Alshahrani, Reem N. Al-Wesabi, Fahd Ben Haj Hassine, Siwar Abdullah Alkhonaini, Mimouna Mustafa Hilal, Anwer |
description | Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm (KHA) which results in improved classification performance. In order to demonstrate the good classification outcome of the DTL-PSCC technique, a wide range of simulations take place on benchmark MRI datasets. The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%. |
doi_str_mv | 10.32604/cmc.2022.026131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646011160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646011160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-115380acf099c6f294781ff98ecc333c3c6a124c4c054d35c46fafa15d36bfac3</originalsourceid><addsrcrecordid>eNpNkD1PAzEMhiMEEqWwM0ZivuLEudAb2xMflYpgoAtLFHxJleo-SpIO_HsOysBky370Wn4YuxYwQ6lB3VJHMwlSzkBqgeKETUSpdCGl1Kf_-nN2kdIOADVWMGHvi5iDDxRsy1d9dm0btq4nx5c2uYa_xiFlmx2v7TiMvG5tSj-8zWHo-fPQuJZvUui3fBmGzjXjZgzq7NalS3bmbZvc1V-dss3D_Vv9VKxfHlf1Yl2QVJgLIUqcgyUPVUXay0rdzYX31dwRISIhaSukIkVQqgZLUtpbb0XZoP7wlnDKbo65-zh8HlzKZjccYj-eNFIrDUIIDSMFR4rGl1J03uxj6Gz8MgLMr0EzGjQ_Bs3RIH4DMhxkTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646011160</pqid></control><display><type>article</type><title>Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>A. Malibari, Areej ; Alshahrani, Reem ; N. Al-Wesabi, Fahd ; Ben Haj Hassine, Siwar ; Abdullah Alkhonaini, Mimouna ; Mustafa Hilal, Anwer</creator><creatorcontrib>A. Malibari, Areej ; Alshahrani, Reem ; N. Al-Wesabi, Fahd ; Ben Haj Hassine, Siwar ; Abdullah Alkhonaini, Mimouna ; Mustafa Hilal, Anwer</creatorcontrib><description>Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm (KHA) which results in improved classification performance. In order to demonstrate the good classification outcome of the DTL-PSCC technique, a wide range of simulations take place on benchmark MRI datasets. The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2022.026131</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; Decision making ; Feature extraction ; Image classification ; Image processing ; Krill ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Medical research ; Prostate cancer</subject><ispartof>Computers, materials & continua, 2022, Vol.72 (2), p.3799-3813</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-115380acf099c6f294781ff98ecc333c3c6a124c4c054d35c46fafa15d36bfac3</citedby><cites>FETCH-LOGICAL-c243t-115380acf099c6f294781ff98ecc333c3c6a124c4c054d35c46fafa15d36bfac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>A. Malibari, Areej</creatorcontrib><creatorcontrib>Alshahrani, Reem</creatorcontrib><creatorcontrib>N. Al-Wesabi, Fahd</creatorcontrib><creatorcontrib>Ben Haj Hassine, Siwar</creatorcontrib><creatorcontrib>Abdullah Alkhonaini, Mimouna</creatorcontrib><creatorcontrib>Mustafa Hilal, Anwer</creatorcontrib><title>Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images</title><title>Computers, materials & continua</title><description>Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm (KHA) which results in improved classification performance. In order to demonstrate the good classification outcome of the DTL-PSCC technique, a wide range of simulations take place on benchmark MRI datasets. The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Decision making</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Krill</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Prostate cancer</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkD1PAzEMhiMEEqWwM0ZivuLEudAb2xMflYpgoAtLFHxJleo-SpIO_HsOysBky370Wn4YuxYwQ6lB3VJHMwlSzkBqgeKETUSpdCGl1Kf_-nN2kdIOADVWMGHvi5iDDxRsy1d9dm0btq4nx5c2uYa_xiFlmx2v7TiMvG5tSj-8zWHo-fPQuJZvUui3fBmGzjXjZgzq7NalS3bmbZvc1V-dss3D_Vv9VKxfHlf1Yl2QVJgLIUqcgyUPVUXay0rdzYX31dwRISIhaSukIkVQqgZLUtpbb0XZoP7wlnDKbo65-zh8HlzKZjccYj-eNFIrDUIIDSMFR4rGl1J03uxj6Gz8MgLMr0EzGjQ_Bs3RIH4DMhxkTQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A. Malibari, Areej</creator><creator>Alshahrani, Reem</creator><creator>N. Al-Wesabi, Fahd</creator><creator>Ben Haj Hassine, Siwar</creator><creator>Abdullah Alkhonaini, Mimouna</creator><creator>Mustafa Hilal, Anwer</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images</title><author>A. Malibari, Areej ; Alshahrani, Reem ; N. Al-Wesabi, Fahd ; Ben Haj Hassine, Siwar ; Abdullah Alkhonaini, Mimouna ; Mustafa Hilal, Anwer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-115380acf099c6f294781ff98ecc333c3c6a124c4c054d35c46fafa15d36bfac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Decision making</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Krill</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Prostate cancer</topic><toplevel>online_resources</toplevel><creatorcontrib>A. Malibari, Areej</creatorcontrib><creatorcontrib>Alshahrani, Reem</creatorcontrib><creatorcontrib>N. Al-Wesabi, Fahd</creatorcontrib><creatorcontrib>Ben Haj Hassine, Siwar</creatorcontrib><creatorcontrib>Abdullah Alkhonaini, Mimouna</creatorcontrib><creatorcontrib>Mustafa Hilal, Anwer</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials & continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A. Malibari, Areej</au><au>Alshahrani, Reem</au><au>N. Al-Wesabi, Fahd</au><au>Ben Haj Hassine, Siwar</au><au>Abdullah Alkhonaini, Mimouna</au><au>Mustafa Hilal, Anwer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images</atitle><jtitle>Computers, materials & continua</jtitle><date>2022</date><risdate>2022</risdate><volume>72</volume><issue>2</issue><spage>3799</spage><epage>3813</epage><pages>3799-3813</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm (KHA) which results in improved classification performance. In order to demonstrate the good classification outcome of the DTL-PSCC technique, a wide range of simulations take place on benchmark MRI datasets. The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2022.026131</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2226 |
ispartof | Computers, materials & continua, 2022, Vol.72 (2), p.3799-3813 |
issn | 1546-2226 1546-2218 1546-2226 |
language | eng |
recordid | cdi_proquest_journals_2646011160 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial intelligence Classification Decision making Feature extraction Image classification Image processing Krill Machine learning Magnetic resonance imaging Medical imaging Medical research Prostate cancer |
title | Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Based%20Prostate%20Cancer%20Classification%20Model%20Using%20Biomedical%20Images&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=A.%20Malibari,%20Areej&rft.date=2022&rft.volume=72&rft.issue=2&rft.spage=3799&rft.epage=3813&rft.pages=3799-3813&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2022.026131&rft_dat=%3Cproquest_cross%3E2646011160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646011160&rft_id=info:pmid/&rfr_iscdi=true |