Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images

Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2022, Vol.72 (2), p.3799-3813
Hauptverfasser: A. Malibari, Areej, Alshahrani, Reem, N. Al-Wesabi, Fahd, Ben Haj Hassine, Siwar, Abdullah Alkhonaini, Mimouna, Mustafa Hilal, Anwer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3813
container_issue 2
container_start_page 3799
container_title Computers, materials & continua
container_volume 72
creator A. Malibari, Areej
Alshahrani, Reem
N. Al-Wesabi, Fahd
Ben Haj Hassine, Siwar
Abdullah Alkhonaini, Mimouna
Mustafa Hilal, Anwer
description Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm (KHA) which results in improved classification performance. In order to demonstrate the good classification outcome of the DTL-PSCC technique, a wide range of simulations take place on benchmark MRI datasets. The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.
doi_str_mv 10.32604/cmc.2022.026131
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646011160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646011160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-115380acf099c6f294781ff98ecc333c3c6a124c4c054d35c46fafa15d36bfac3</originalsourceid><addsrcrecordid>eNpNkD1PAzEMhiMEEqWwM0ZivuLEudAb2xMflYpgoAtLFHxJleo-SpIO_HsOysBky370Wn4YuxYwQ6lB3VJHMwlSzkBqgeKETUSpdCGl1Kf_-nN2kdIOADVWMGHvi5iDDxRsy1d9dm0btq4nx5c2uYa_xiFlmx2v7TiMvG5tSj-8zWHo-fPQuJZvUui3fBmGzjXjZgzq7NalS3bmbZvc1V-dss3D_Vv9VKxfHlf1Yl2QVJgLIUqcgyUPVUXay0rdzYX31dwRISIhaSukIkVQqgZLUtpbb0XZoP7wlnDKbo65-zh8HlzKZjccYj-eNFIrDUIIDSMFR4rGl1J03uxj6Gz8MgLMr0EzGjQ_Bs3RIH4DMhxkTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646011160</pqid></control><display><type>article</type><title>Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>A. Malibari, Areej ; Alshahrani, Reem ; N. Al-Wesabi, Fahd ; Ben Haj Hassine, Siwar ; Abdullah Alkhonaini, Mimouna ; Mustafa Hilal, Anwer</creator><creatorcontrib>A. Malibari, Areej ; Alshahrani, Reem ; N. Al-Wesabi, Fahd ; Ben Haj Hassine, Siwar ; Abdullah Alkhonaini, Mimouna ; Mustafa Hilal, Anwer</creatorcontrib><description>Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm (KHA) which results in improved classification performance. In order to demonstrate the good classification outcome of the DTL-PSCC technique, a wide range of simulations take place on benchmark MRI datasets. The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2022.026131</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; Decision making ; Feature extraction ; Image classification ; Image processing ; Krill ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Medical research ; Prostate cancer</subject><ispartof>Computers, materials &amp; continua, 2022, Vol.72 (2), p.3799-3813</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-115380acf099c6f294781ff98ecc333c3c6a124c4c054d35c46fafa15d36bfac3</citedby><cites>FETCH-LOGICAL-c243t-115380acf099c6f294781ff98ecc333c3c6a124c4c054d35c46fafa15d36bfac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>A. Malibari, Areej</creatorcontrib><creatorcontrib>Alshahrani, Reem</creatorcontrib><creatorcontrib>N. Al-Wesabi, Fahd</creatorcontrib><creatorcontrib>Ben Haj Hassine, Siwar</creatorcontrib><creatorcontrib>Abdullah Alkhonaini, Mimouna</creatorcontrib><creatorcontrib>Mustafa Hilal, Anwer</creatorcontrib><title>Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images</title><title>Computers, materials &amp; continua</title><description>Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm (KHA) which results in improved classification performance. In order to demonstrate the good classification outcome of the DTL-PSCC technique, a wide range of simulations take place on benchmark MRI datasets. The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Decision making</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Krill</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Prostate cancer</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkD1PAzEMhiMEEqWwM0ZivuLEudAb2xMflYpgoAtLFHxJleo-SpIO_HsOysBky370Wn4YuxYwQ6lB3VJHMwlSzkBqgeKETUSpdCGl1Kf_-nN2kdIOADVWMGHvi5iDDxRsy1d9dm0btq4nx5c2uYa_xiFlmx2v7TiMvG5tSj-8zWHo-fPQuJZvUui3fBmGzjXjZgzq7NalS3bmbZvc1V-dss3D_Vv9VKxfHlf1Yl2QVJgLIUqcgyUPVUXay0rdzYX31dwRISIhaSukIkVQqgZLUtpbb0XZoP7wlnDKbo65-zh8HlzKZjccYj-eNFIrDUIIDSMFR4rGl1J03uxj6Gz8MgLMr0EzGjQ_Bs3RIH4DMhxkTQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A. Malibari, Areej</creator><creator>Alshahrani, Reem</creator><creator>N. Al-Wesabi, Fahd</creator><creator>Ben Haj Hassine, Siwar</creator><creator>Abdullah Alkhonaini, Mimouna</creator><creator>Mustafa Hilal, Anwer</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images</title><author>A. Malibari, Areej ; Alshahrani, Reem ; N. Al-Wesabi, Fahd ; Ben Haj Hassine, Siwar ; Abdullah Alkhonaini, Mimouna ; Mustafa Hilal, Anwer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-115380acf099c6f294781ff98ecc333c3c6a124c4c054d35c46fafa15d36bfac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Decision making</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Krill</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Prostate cancer</topic><toplevel>online_resources</toplevel><creatorcontrib>A. Malibari, Areej</creatorcontrib><creatorcontrib>Alshahrani, Reem</creatorcontrib><creatorcontrib>N. Al-Wesabi, Fahd</creatorcontrib><creatorcontrib>Ben Haj Hassine, Siwar</creatorcontrib><creatorcontrib>Abdullah Alkhonaini, Mimouna</creatorcontrib><creatorcontrib>Mustafa Hilal, Anwer</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A. Malibari, Areej</au><au>Alshahrani, Reem</au><au>N. Al-Wesabi, Fahd</au><au>Ben Haj Hassine, Siwar</au><au>Abdullah Alkhonaini, Mimouna</au><au>Mustafa Hilal, Anwer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2022</date><risdate>2022</risdate><volume>72</volume><issue>2</issue><spage>3799</spage><epage>3813</epage><pages>3799-3813</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the class labels are allotted to the input MRI images. Moreover, the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm (KHA) which results in improved classification performance. In order to demonstrate the good classification outcome of the DTL-PSCC technique, a wide range of simulations take place on benchmark MRI datasets. The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2022.026131</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2022, Vol.72 (2), p.3799-3813
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2646011160
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial intelligence
Classification
Decision making
Feature extraction
Image classification
Image processing
Krill
Machine learning
Magnetic resonance imaging
Medical imaging
Medical research
Prostate cancer
title Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Based%20Prostate%20Cancer%20Classification%20Model%20Using%20Biomedical%20Images&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=A.%20Malibari,%20Areej&rft.date=2022&rft.volume=72&rft.issue=2&rft.spage=3799&rft.epage=3813&rft.pages=3799-3813&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2022.026131&rft_dat=%3Cproquest_cross%3E2646011160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646011160&rft_id=info:pmid/&rfr_iscdi=true