Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures
Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element model...
Gespeichert in:
Veröffentlicht in: | Computer modeling in engineering & sciences 2022, Vol.131 (2), p.929-947 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 947 |
---|---|
container_issue | 2 |
container_start_page | 929 |
container_title | Computer modeling in engineering & sciences |
container_volume | 131 |
creator | Xu, Shaoqiang Li, Weiwei Li, Lin Li, Tao Ma, Chicheng |
description | Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures. It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes. Furthermore, multi-objective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm, and the corresponding Pareto front diagram is obtained. This research provides a new idea for the crashworthiness design of thin-walled structures. |
doi_str_mv | 10.32604/cmes.2022.018964 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646008935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646008935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-97406f2ee4d1da14547be3945c370c2247c57d1c67b40287b1cdb45639a756b73</originalsourceid><addsrcrecordid>eNpNkDtPwzAAhC0EEqXwA9gsMaf47WSE8milogwUMVqO41BXaRxsBwS_npQyMN1Jd7qTPgAuMZpRIhC7NjsbZwQRMkM4LwQ7AhPMicgwR-L4nz8FZzFuEaKC5sUEtPOg4-bTh7RxnY0R3tno3jqouxo-DW1yWVltrUnuw8KyT27nvnVyvoOND_DW-WzZxd4FW8OFs0EHs3FGt3A9rmWvum3H4DmFwaQh2HgOThrdRnvxp1Pw8nC_ni-yVfm4nN-sMkOxSFkhGRINsZbVuNaYcSYrSwvGDZXIEMKk4bLGRsiKIZLLCpu6YlzQQksuKkmn4Oqw2wf_PtiY1NYPoRsvFRFMIJQXlI8tfGiZ4GMMtlF9cDsdvhRG6heq2kNVe6jqAJX-AD5ma9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646008935</pqid></control><display><type>article</type><title>Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Tech Science Press</source><creator>Xu, Shaoqiang ; Li, Weiwei ; Li, Lin ; Li, Tao ; Ma, Chicheng</creator><creatorcontrib>Xu, Shaoqiang ; Li, Weiwei ; Li, Lin ; Li, Tao ; Ma, Chicheng</creatorcontrib><description>Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures. It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes. Furthermore, multi-objective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm, and the corresponding Pareto front diagram is obtained. This research provides a new idea for the crashworthiness design of thin-walled structures.</description><identifier>ISSN: 1526-1506</identifier><identifier>ISSN: 1526-1492</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2022.018964</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Biomimetics ; Bionics ; Crashworthiness ; Deformation ; Design ; Design optimization ; Dynamic loads ; Energy ; Energy absorption ; Finite element method ; Genetic algorithms ; Impact strength ; Mathematical models ; Mechanical properties ; Multiple objective analysis ; Optimization ; Pareto optimization ; Response surface methodology ; Self-similarity ; Simulation ; Structural hierarchy ; Thin wall structures ; Tubes</subject><ispartof>Computer modeling in engineering & sciences, 2022, Vol.131 (2), p.929-947</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-97406f2ee4d1da14547be3945c370c2247c57d1c67b40287b1cdb45639a756b73</citedby><cites>FETCH-LOGICAL-c316t-97406f2ee4d1da14547be3945c370c2247c57d1c67b40287b1cdb45639a756b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Shaoqiang</creatorcontrib><creatorcontrib>Li, Weiwei</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Ma, Chicheng</creatorcontrib><title>Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures</title><title>Computer modeling in engineering & sciences</title><description>Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures. It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes. Furthermore, multi-objective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm, and the corresponding Pareto front diagram is obtained. This research provides a new idea for the crashworthiness design of thin-walled structures.</description><subject>Biomimetics</subject><subject>Bionics</subject><subject>Crashworthiness</subject><subject>Deformation</subject><subject>Design</subject><subject>Design optimization</subject><subject>Dynamic loads</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Impact strength</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Response surface methodology</subject><subject>Self-similarity</subject><subject>Simulation</subject><subject>Structural hierarchy</subject><subject>Thin wall structures</subject><subject>Tubes</subject><issn>1526-1506</issn><issn>1526-1492</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkDtPwzAAhC0EEqXwA9gsMaf47WSE8milogwUMVqO41BXaRxsBwS_npQyMN1Jd7qTPgAuMZpRIhC7NjsbZwQRMkM4LwQ7AhPMicgwR-L4nz8FZzFuEaKC5sUEtPOg4-bTh7RxnY0R3tno3jqouxo-DW1yWVltrUnuw8KyT27nvnVyvoOND_DW-WzZxd4FW8OFs0EHs3FGt3A9rmWvum3H4DmFwaQh2HgOThrdRnvxp1Pw8nC_ni-yVfm4nN-sMkOxSFkhGRINsZbVuNaYcSYrSwvGDZXIEMKk4bLGRsiKIZLLCpu6YlzQQksuKkmn4Oqw2wf_PtiY1NYPoRsvFRFMIJQXlI8tfGiZ4GMMtlF9cDsdvhRG6heq2kNVe6jqAJX-AD5ma9U</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xu, Shaoqiang</creator><creator>Li, Weiwei</creator><creator>Li, Lin</creator><creator>Li, Tao</creator><creator>Ma, Chicheng</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures</title><author>Xu, Shaoqiang ; Li, Weiwei ; Li, Lin ; Li, Tao ; Ma, Chicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-97406f2ee4d1da14547be3945c370c2247c57d1c67b40287b1cdb45639a756b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomimetics</topic><topic>Bionics</topic><topic>Crashworthiness</topic><topic>Deformation</topic><topic>Design</topic><topic>Design optimization</topic><topic>Dynamic loads</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Impact strength</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Response surface methodology</topic><topic>Self-similarity</topic><topic>Simulation</topic><topic>Structural hierarchy</topic><topic>Thin wall structures</topic><topic>Tubes</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shaoqiang</creatorcontrib><creatorcontrib>Li, Weiwei</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Ma, Chicheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering & sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shaoqiang</au><au>Li, Weiwei</au><au>Li, Lin</au><au>Li, Tao</au><au>Ma, Chicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures</atitle><jtitle>Computer modeling in engineering & sciences</jtitle><date>2022</date><risdate>2022</risdate><volume>131</volume><issue>2</issue><spage>929</spage><epage>947</epage><pages>929-947</pages><issn>1526-1506</issn><issn>1526-1492</issn><eissn>1526-1506</eissn><abstract>Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures. It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes. Furthermore, multi-objective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm, and the corresponding Pareto front diagram is obtained. This research provides a new idea for the crashworthiness design of thin-walled structures.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmes.2022.018964</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-1506 |
ispartof | Computer modeling in engineering & sciences, 2022, Vol.131 (2), p.929-947 |
issn | 1526-1506 1526-1492 1526-1506 |
language | eng |
recordid | cdi_proquest_journals_2646008935 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Tech Science Press |
subjects | Biomimetics Bionics Crashworthiness Deformation Design Design optimization Dynamic loads Energy Energy absorption Finite element method Genetic algorithms Impact strength Mathematical models Mechanical properties Multiple objective analysis Optimization Pareto optimization Response surface methodology Self-similarity Simulation Structural hierarchy Thin wall structures Tubes |
title | Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crashworthiness%20Design%20and%20Multi-Objective%20Optimization%20for%20Bio-Inspired%20Hierarchical%20Thin-Walled%20Structures&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Xu,%20Shaoqiang&rft.date=2022&rft.volume=131&rft.issue=2&rft.spage=929&rft.epage=947&rft.pages=929-947&rft.issn=1526-1506&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2022.018964&rft_dat=%3Cproquest_cross%3E2646008935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646008935&rft_id=info:pmid/&rfr_iscdi=true |