Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures

Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2022, Vol.131 (2), p.929-947
Hauptverfasser: Xu, Shaoqiang, Li, Weiwei, Li, Lin, Li, Tao, Ma, Chicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 947
container_issue 2
container_start_page 929
container_title Computer modeling in engineering & sciences
container_volume 131
creator Xu, Shaoqiang
Li, Weiwei
Li, Lin
Li, Tao
Ma, Chicheng
description Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures. It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes. Furthermore, multi-objective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm, and the corresponding Pareto front diagram is obtained. This research provides a new idea for the crashworthiness design of thin-walled structures.
doi_str_mv 10.32604/cmes.2022.018964
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2646008935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646008935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-97406f2ee4d1da14547be3945c370c2247c57d1c67b40287b1cdb45639a756b73</originalsourceid><addsrcrecordid>eNpNkDtPwzAAhC0EEqXwA9gsMaf47WSE8milogwUMVqO41BXaRxsBwS_npQyMN1Jd7qTPgAuMZpRIhC7NjsbZwQRMkM4LwQ7AhPMicgwR-L4nz8FZzFuEaKC5sUEtPOg4-bTh7RxnY0R3tno3jqouxo-DW1yWVltrUnuw8KyT27nvnVyvoOND_DW-WzZxd4FW8OFs0EHs3FGt3A9rmWvum3H4DmFwaQh2HgOThrdRnvxp1Pw8nC_ni-yVfm4nN-sMkOxSFkhGRINsZbVuNaYcSYrSwvGDZXIEMKk4bLGRsiKIZLLCpu6YlzQQksuKkmn4Oqw2wf_PtiY1NYPoRsvFRFMIJQXlI8tfGiZ4GMMtlF9cDsdvhRG6heq2kNVe6jqAJX-AD5ma9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646008935</pqid></control><display><type>article</type><title>Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Tech Science Press</source><creator>Xu, Shaoqiang ; Li, Weiwei ; Li, Lin ; Li, Tao ; Ma, Chicheng</creator><creatorcontrib>Xu, Shaoqiang ; Li, Weiwei ; Li, Lin ; Li, Tao ; Ma, Chicheng</creatorcontrib><description>Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures. It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes. Furthermore, multi-objective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm, and the corresponding Pareto front diagram is obtained. This research provides a new idea for the crashworthiness design of thin-walled structures.</description><identifier>ISSN: 1526-1506</identifier><identifier>ISSN: 1526-1492</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2022.018964</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Biomimetics ; Bionics ; Crashworthiness ; Deformation ; Design ; Design optimization ; Dynamic loads ; Energy ; Energy absorption ; Finite element method ; Genetic algorithms ; Impact strength ; Mathematical models ; Mechanical properties ; Multiple objective analysis ; Optimization ; Pareto optimization ; Response surface methodology ; Self-similarity ; Simulation ; Structural hierarchy ; Thin wall structures ; Tubes</subject><ispartof>Computer modeling in engineering &amp; sciences, 2022, Vol.131 (2), p.929-947</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-97406f2ee4d1da14547be3945c370c2247c57d1c67b40287b1cdb45639a756b73</citedby><cites>FETCH-LOGICAL-c316t-97406f2ee4d1da14547be3945c370c2247c57d1c67b40287b1cdb45639a756b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Shaoqiang</creatorcontrib><creatorcontrib>Li, Weiwei</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Ma, Chicheng</creatorcontrib><title>Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures</title><title>Computer modeling in engineering &amp; sciences</title><description>Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures. It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes. Furthermore, multi-objective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm, and the corresponding Pareto front diagram is obtained. This research provides a new idea for the crashworthiness design of thin-walled structures.</description><subject>Biomimetics</subject><subject>Bionics</subject><subject>Crashworthiness</subject><subject>Deformation</subject><subject>Design</subject><subject>Design optimization</subject><subject>Dynamic loads</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Impact strength</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Response surface methodology</subject><subject>Self-similarity</subject><subject>Simulation</subject><subject>Structural hierarchy</subject><subject>Thin wall structures</subject><subject>Tubes</subject><issn>1526-1506</issn><issn>1526-1492</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkDtPwzAAhC0EEqXwA9gsMaf47WSE8milogwUMVqO41BXaRxsBwS_npQyMN1Jd7qTPgAuMZpRIhC7NjsbZwQRMkM4LwQ7AhPMicgwR-L4nz8FZzFuEaKC5sUEtPOg4-bTh7RxnY0R3tno3jqouxo-DW1yWVltrUnuw8KyT27nvnVyvoOND_DW-WzZxd4FW8OFs0EHs3FGt3A9rmWvum3H4DmFwaQh2HgOThrdRnvxp1Pw8nC_ni-yVfm4nN-sMkOxSFkhGRINsZbVuNaYcSYrSwvGDZXIEMKk4bLGRsiKIZLLCpu6YlzQQksuKkmn4Oqw2wf_PtiY1NYPoRsvFRFMIJQXlI8tfGiZ4GMMtlF9cDsdvhRG6heq2kNVe6jqAJX-AD5ma9U</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xu, Shaoqiang</creator><creator>Li, Weiwei</creator><creator>Li, Lin</creator><creator>Li, Tao</creator><creator>Ma, Chicheng</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures</title><author>Xu, Shaoqiang ; Li, Weiwei ; Li, Lin ; Li, Tao ; Ma, Chicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-97406f2ee4d1da14547be3945c370c2247c57d1c67b40287b1cdb45639a756b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomimetics</topic><topic>Bionics</topic><topic>Crashworthiness</topic><topic>Deformation</topic><topic>Design</topic><topic>Design optimization</topic><topic>Dynamic loads</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Impact strength</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Response surface methodology</topic><topic>Self-similarity</topic><topic>Simulation</topic><topic>Structural hierarchy</topic><topic>Thin wall structures</topic><topic>Tubes</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shaoqiang</creatorcontrib><creatorcontrib>Li, Weiwei</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Ma, Chicheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shaoqiang</au><au>Li, Weiwei</au><au>Li, Lin</au><au>Li, Tao</au><au>Ma, Chicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><date>2022</date><risdate>2022</risdate><volume>131</volume><issue>2</issue><spage>929</spage><epage>947</epage><pages>929-947</pages><issn>1526-1506</issn><issn>1526-1492</issn><eissn>1526-1506</eissn><abstract>Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures. It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes. Furthermore, multi-objective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm, and the corresponding Pareto front diagram is obtained. This research provides a new idea for the crashworthiness design of thin-walled structures.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmes.2022.018964</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1506
ispartof Computer modeling in engineering & sciences, 2022, Vol.131 (2), p.929-947
issn 1526-1506
1526-1492
1526-1506
language eng
recordid cdi_proquest_journals_2646008935
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Tech Science Press
subjects Biomimetics
Bionics
Crashworthiness
Deformation
Design
Design optimization
Dynamic loads
Energy
Energy absorption
Finite element method
Genetic algorithms
Impact strength
Mathematical models
Mechanical properties
Multiple objective analysis
Optimization
Pareto optimization
Response surface methodology
Self-similarity
Simulation
Structural hierarchy
Thin wall structures
Tubes
title Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crashworthiness%20Design%20and%20Multi-Objective%20Optimization%20for%20Bio-Inspired%20Hierarchical%20Thin-Walled%20Structures&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Xu,%20Shaoqiang&rft.date=2022&rft.volume=131&rft.issue=2&rft.spage=929&rft.epage=947&rft.pages=929-947&rft.issn=1526-1506&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2022.018964&rft_dat=%3Cproquest_cross%3E2646008935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646008935&rft_id=info:pmid/&rfr_iscdi=true