On the Maximal Cut in a Random Hypergraph

This paper deals with the problem of finding the max-cut for random hypergraphs. We consider the classical binomial model of a random k -uniform hypergraph on n vertices with probability . The main results generalize previously known facts for the graph case and show that in the sparse case (when fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2021-11, Vol.104 (3), p.336-339
Hauptverfasser: Zakharov, P. A., Shabanov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 3
container_start_page 336
container_title Doklady. Mathematics
container_volume 104
creator Zakharov, P. A.
Shabanov, D. A.
description This paper deals with the problem of finding the max-cut for random hypergraphs. We consider the classical binomial model of a random k -uniform hypergraph on n vertices with probability . The main results generalize previously known facts for the graph case and show that in the sparse case (when for some fixed independent of n ) there exists such that the ratio of the maximal cut of to the number of vertices converges in probability to . Moreover, we obtain some bounds for the value of .
doi_str_mv 10.1134/S1064562421060181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645878355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645878355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-7791f881e18003de2dc9e9aaff40ab15a0e49276573ba93b45441dbc2be6c9a23</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwOuXETnziuTpQRthUrBx3q4SSZ90CZxJgH7906J4EJc3QPncTmHkGtgdwBC3r8B01JpLnkEDAyckAkoAYkRmp9GHOnkyJ-TixC2jEnFGZuQ22VD-7WjL_i12eOO5kNPNw1F-opN1e7p_NA5v_LYrS_JWY274K5-7pR8PD2-5_NksZw95w-LpORS90maZlAbAw4MY6JyvCozlyHWtWRYgELmZMZTrVJRYCYKqaSEqih54XSZIRdTcjPmdr79HFzo7bYdfBNfWh4rmtQIpaIKRlXp2xC8q23nYwF_sMDscRH7Z5Ho4aMnRG2zcv43-X_TNyDfX3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645878355</pqid></control><display><type>article</type><title>On the Maximal Cut in a Random Hypergraph</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zakharov, P. A. ; Shabanov, D. A.</creator><creatorcontrib>Zakharov, P. A. ; Shabanov, D. A.</creatorcontrib><description>This paper deals with the problem of finding the max-cut for random hypergraphs. We consider the classical binomial model of a random k -uniform hypergraph on n vertices with probability . The main results generalize previously known facts for the graph case and show that in the sparse case (when for some fixed independent of n ) there exists such that the ratio of the maximal cut of to the number of vertices converges in probability to . Moreover, we obtain some bounds for the value of .</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562421060181</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Apexes ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics</subject><ispartof>Doklady. Mathematics, 2021-11, Vol.104 (3), p.336-339</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1064-5624, Doklady Mathematics, 2021, Vol. 104, No. 3, pp. 336–339. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2021, Vol. 501, pp. 26–30.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-7791f881e18003de2dc9e9aaff40ab15a0e49276573ba93b45441dbc2be6c9a23</citedby><cites>FETCH-LOGICAL-c246t-7791f881e18003de2dc9e9aaff40ab15a0e49276573ba93b45441dbc2be6c9a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562421060181$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562421060181$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zakharov, P. A.</creatorcontrib><creatorcontrib>Shabanov, D. A.</creatorcontrib><title>On the Maximal Cut in a Random Hypergraph</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>This paper deals with the problem of finding the max-cut for random hypergraphs. We consider the classical binomial model of a random k -uniform hypergraph on n vertices with probability . The main results generalize previously known facts for the graph case and show that in the sparse case (when for some fixed independent of n ) there exists such that the ratio of the maximal cut of to the number of vertices converges in probability to . Moreover, we obtain some bounds for the value of .</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKw0AUHUTBWv0AdwOuXETnziuTpQRthUrBx3q4SSZ90CZxJgH7906J4EJc3QPncTmHkGtgdwBC3r8B01JpLnkEDAyckAkoAYkRmp9GHOnkyJ-TixC2jEnFGZuQ22VD-7WjL_i12eOO5kNPNw1F-opN1e7p_NA5v_LYrS_JWY274K5-7pR8PD2-5_NksZw95w-LpORS90maZlAbAw4MY6JyvCozlyHWtWRYgELmZMZTrVJRYCYKqaSEqih54XSZIRdTcjPmdr79HFzo7bYdfBNfWh4rmtQIpaIKRlXp2xC8q23nYwF_sMDscRH7Z5Ho4aMnRG2zcv43-X_TNyDfX3k</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zakharov, P. A.</creator><creator>Shabanov, D. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>On the Maximal Cut in a Random Hypergraph</title><author>Zakharov, P. A. ; Shabanov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-7791f881e18003de2dc9e9aaff40ab15a0e49276573ba93b45441dbc2be6c9a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakharov, P. A.</creatorcontrib><creatorcontrib>Shabanov, D. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakharov, P. A.</au><au>Shabanov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Maximal Cut in a Random Hypergraph</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>104</volume><issue>3</issue><spage>336</spage><epage>339</epage><pages>336-339</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>This paper deals with the problem of finding the max-cut for random hypergraphs. We consider the classical binomial model of a random k -uniform hypergraph on n vertices with probability . The main results generalize previously known facts for the graph case and show that in the sparse case (when for some fixed independent of n ) there exists such that the ratio of the maximal cut of to the number of vertices converges in probability to . Moreover, we obtain some bounds for the value of .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562421060181</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2021-11, Vol.104 (3), p.336-339
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_2645878355
source SpringerLink Journals - AutoHoldings
subjects Apexes
Graph theory
Graphs
Mathematics
Mathematics and Statistics
title On the Maximal Cut in a Random Hypergraph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Maximal%20Cut%20in%20a%20Random%20Hypergraph&rft.jtitle=Doklady.%20Mathematics&rft.au=Zakharov,%20P.%20A.&rft.date=2021-11-01&rft.volume=104&rft.issue=3&rft.spage=336&rft.epage=339&rft.pages=336-339&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562421060181&rft_dat=%3Cproquest_cross%3E2645878355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645878355&rft_id=info:pmid/&rfr_iscdi=true