Using polystyrene spheres to produce thin, porous interlayers in alumina laminates

Porous alumina layers were produced by colloidal processing of alumina with the addition of 15, 30, and 45 vol% polystyrene spheres (PS) as pore formers. Alumina laminates were designed with dense layers alternated with porous interlayers using 45 vol% of PS spheres and sintered at 1350°C. The layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied ceramic technology 2022-05, Vol.19 (3), p.1453-1461
Hauptverfasser: Daniel Barros, Marcelo, Hotza, Dachamir, Jelitto, Hans, Janßen, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1461
container_issue 3
container_start_page 1453
container_title International journal of applied ceramic technology
container_volume 19
creator Daniel Barros, Marcelo
Hotza, Dachamir
Jelitto, Hans
Janßen, Rolf
description Porous alumina layers were produced by colloidal processing of alumina with the addition of 15, 30, and 45 vol% polystyrene spheres (PS) as pore formers. Alumina laminates were designed with dense layers alternated with porous interlayers using 45 vol% of PS spheres and sintered at 1350°C. The layers’ thickness ranged from 2 to 15 μm, with a random distribution of pores. The higher volume fraction of pores tends to decrease the alumina average grain size, but does not influence the final size of bulk and surface pores. The obtained values of hardness and Young's modulus for the porous interlayer are ∼30% of the values obtained for the dense layer. Vickers indentations suggested that crack propagation can be opposed by the porous interlayers. However, values of mechanical strength, fracture toughness (KIC), and work of fracture presented no relevant difference compared to a monolithic reference. R‐curves presented a slight increase and KIC a decrease due to crack propagation through the porous interlayers. Although no macrodeviations of the crack path were observed in the fractured surfaces, microdeviations were detected in the interlayer regions.
doi_str_mv 10.1111/ijac.13980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645872144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645872144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2600-3dabf624dacf97fba5d56d5afc063ea2f511ae193e785e9affb3de85817aae7b3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYv_gUL3sTU3exHkmMpflQKgljwtkySWZuQJnE3QfLfmxjPzuW9w29mHo-Qa85WfJz7ooRsxUUSsxOy4JGUQSRZeDp6JXWgZPhxTi68LxkTUgi9IG97X9SftG2qwXeDwxqpbw_o0NOuoa1r8j5D2h2K-m6EXNN7WtQdugoGdJOnUPXHogZawSQd-ktyZqHyePWnS7J_fHjfPAe716ftZr0LslAzFogcUqtDmUNmk8imoHKlcwU2Y1oghFZxDsgTgVGsMAFrU5FjrGIeAWCUiiW5me-OKb969J0pm97V40sTaqniKORSjtTtTGWu8d6hNa0rjuAGw5mZOjNTZ-a3sxHmM_xdVDj8Q5rty3oz7_wAX3dxCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645872144</pqid></control><display><type>article</type><title>Using polystyrene spheres to produce thin, porous interlayers in alumina laminates</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Daniel Barros, Marcelo ; Hotza, Dachamir ; Jelitto, Hans ; Janßen, Rolf</creator><creatorcontrib>Daniel Barros, Marcelo ; Hotza, Dachamir ; Jelitto, Hans ; Janßen, Rolf</creatorcontrib><description>Porous alumina layers were produced by colloidal processing of alumina with the addition of 15, 30, and 45 vol% polystyrene spheres (PS) as pore formers. Alumina laminates were designed with dense layers alternated with porous interlayers using 45 vol% of PS spheres and sintered at 1350°C. The layers’ thickness ranged from 2 to 15 μm, with a random distribution of pores. The higher volume fraction of pores tends to decrease the alumina average grain size, but does not influence the final size of bulk and surface pores. The obtained values of hardness and Young's modulus for the porous interlayer are ∼30% of the values obtained for the dense layer. Vickers indentations suggested that crack propagation can be opposed by the porous interlayers. However, values of mechanical strength, fracture toughness (KIC), and work of fracture presented no relevant difference compared to a monolithic reference. R‐curves presented a slight increase and KIC a decrease due to crack propagation through the porous interlayers. Although no macrodeviations of the crack path were observed in the fractured surfaces, microdeviations were detected in the interlayer regions.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13980</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>Alumina ; Aluminum oxide ; Bulk modulus ; ceramic laminates ; Colloiding ; Crack propagation ; Diamond pyramid hardness tests ; Fracture toughness ; Grain size ; Interlayers ; Laminates ; mechanical strength ; Modulus of elasticity ; Polystyrene resins ; porosity ; R‐curve ; Sintering (powder metallurgy) ; Thickness</subject><ispartof>International journal of applied ceramic technology, 2022-05, Vol.19 (3), p.1453-1461</ispartof><rights>2021 The American Ceramic Society</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2600-3dabf624dacf97fba5d56d5afc063ea2f511ae193e785e9affb3de85817aae7b3</cites><orcidid>0000-0002-6105-5828 ; 0000-0002-2285-9989 ; 0000-0002-7086-3085 ; 0000-0001-7054-0510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.13980$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.13980$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Daniel Barros, Marcelo</creatorcontrib><creatorcontrib>Hotza, Dachamir</creatorcontrib><creatorcontrib>Jelitto, Hans</creatorcontrib><creatorcontrib>Janßen, Rolf</creatorcontrib><title>Using polystyrene spheres to produce thin, porous interlayers in alumina laminates</title><title>International journal of applied ceramic technology</title><description>Porous alumina layers were produced by colloidal processing of alumina with the addition of 15, 30, and 45 vol% polystyrene spheres (PS) as pore formers. Alumina laminates were designed with dense layers alternated with porous interlayers using 45 vol% of PS spheres and sintered at 1350°C. The layers’ thickness ranged from 2 to 15 μm, with a random distribution of pores. The higher volume fraction of pores tends to decrease the alumina average grain size, but does not influence the final size of bulk and surface pores. The obtained values of hardness and Young's modulus for the porous interlayer are ∼30% of the values obtained for the dense layer. Vickers indentations suggested that crack propagation can be opposed by the porous interlayers. However, values of mechanical strength, fracture toughness (KIC), and work of fracture presented no relevant difference compared to a monolithic reference. R‐curves presented a slight increase and KIC a decrease due to crack propagation through the porous interlayers. Although no macrodeviations of the crack path were observed in the fractured surfaces, microdeviations were detected in the interlayer regions.</description><subject>Alumina</subject><subject>Aluminum oxide</subject><subject>Bulk modulus</subject><subject>ceramic laminates</subject><subject>Colloiding</subject><subject>Crack propagation</subject><subject>Diamond pyramid hardness tests</subject><subject>Fracture toughness</subject><subject>Grain size</subject><subject>Interlayers</subject><subject>Laminates</subject><subject>mechanical strength</subject><subject>Modulus of elasticity</subject><subject>Polystyrene resins</subject><subject>porosity</subject><subject>R‐curve</subject><subject>Sintering (powder metallurgy)</subject><subject>Thickness</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFYv_gUL3sTU3exHkmMpflQKgljwtkySWZuQJnE3QfLfmxjPzuW9w29mHo-Qa85WfJz7ooRsxUUSsxOy4JGUQSRZeDp6JXWgZPhxTi68LxkTUgi9IG97X9SftG2qwXeDwxqpbw_o0NOuoa1r8j5D2h2K-m6EXNN7WtQdugoGdJOnUPXHogZawSQd-ktyZqHyePWnS7J_fHjfPAe716ftZr0LslAzFogcUqtDmUNmk8imoHKlcwU2Y1oghFZxDsgTgVGsMAFrU5FjrGIeAWCUiiW5me-OKb969J0pm97V40sTaqniKORSjtTtTGWu8d6hNa0rjuAGw5mZOjNTZ-a3sxHmM_xdVDj8Q5rty3oz7_wAX3dxCQ</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Daniel Barros, Marcelo</creator><creator>Hotza, Dachamir</creator><creator>Jelitto, Hans</creator><creator>Janßen, Rolf</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6105-5828</orcidid><orcidid>https://orcid.org/0000-0002-2285-9989</orcidid><orcidid>https://orcid.org/0000-0002-7086-3085</orcidid><orcidid>https://orcid.org/0000-0001-7054-0510</orcidid></search><sort><creationdate>202205</creationdate><title>Using polystyrene spheres to produce thin, porous interlayers in alumina laminates</title><author>Daniel Barros, Marcelo ; Hotza, Dachamir ; Jelitto, Hans ; Janßen, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2600-3dabf624dacf97fba5d56d5afc063ea2f511ae193e785e9affb3de85817aae7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alumina</topic><topic>Aluminum oxide</topic><topic>Bulk modulus</topic><topic>ceramic laminates</topic><topic>Colloiding</topic><topic>Crack propagation</topic><topic>Diamond pyramid hardness tests</topic><topic>Fracture toughness</topic><topic>Grain size</topic><topic>Interlayers</topic><topic>Laminates</topic><topic>mechanical strength</topic><topic>Modulus of elasticity</topic><topic>Polystyrene resins</topic><topic>porosity</topic><topic>R‐curve</topic><topic>Sintering (powder metallurgy)</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniel Barros, Marcelo</creatorcontrib><creatorcontrib>Hotza, Dachamir</creatorcontrib><creatorcontrib>Jelitto, Hans</creatorcontrib><creatorcontrib>Janßen, Rolf</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniel Barros, Marcelo</au><au>Hotza, Dachamir</au><au>Jelitto, Hans</au><au>Janßen, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using polystyrene spheres to produce thin, porous interlayers in alumina laminates</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2022-05</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><spage>1453</spage><epage>1461</epage><pages>1453-1461</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>Porous alumina layers were produced by colloidal processing of alumina with the addition of 15, 30, and 45 vol% polystyrene spheres (PS) as pore formers. Alumina laminates were designed with dense layers alternated with porous interlayers using 45 vol% of PS spheres and sintered at 1350°C. The layers’ thickness ranged from 2 to 15 μm, with a random distribution of pores. The higher volume fraction of pores tends to decrease the alumina average grain size, but does not influence the final size of bulk and surface pores. The obtained values of hardness and Young's modulus for the porous interlayer are ∼30% of the values obtained for the dense layer. Vickers indentations suggested that crack propagation can be opposed by the porous interlayers. However, values of mechanical strength, fracture toughness (KIC), and work of fracture presented no relevant difference compared to a monolithic reference. R‐curves presented a slight increase and KIC a decrease due to crack propagation through the porous interlayers. Although no macrodeviations of the crack path were observed in the fractured surfaces, microdeviations were detected in the interlayer regions.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.13980</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6105-5828</orcidid><orcidid>https://orcid.org/0000-0002-2285-9989</orcidid><orcidid>https://orcid.org/0000-0002-7086-3085</orcidid><orcidid>https://orcid.org/0000-0001-7054-0510</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1546-542X
ispartof International journal of applied ceramic technology, 2022-05, Vol.19 (3), p.1453-1461
issn 1546-542X
1744-7402
language eng
recordid cdi_proquest_journals_2645872144
source Wiley Online Library Journals Frontfile Complete
subjects Alumina
Aluminum oxide
Bulk modulus
ceramic laminates
Colloiding
Crack propagation
Diamond pyramid hardness tests
Fracture toughness
Grain size
Interlayers
Laminates
mechanical strength
Modulus of elasticity
Polystyrene resins
porosity
R‐curve
Sintering (powder metallurgy)
Thickness
title Using polystyrene spheres to produce thin, porous interlayers in alumina laminates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20polystyrene%20spheres%20to%20produce%20thin,%20porous%20interlayers%20in%20alumina%20laminates&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Daniel%20Barros,%20Marcelo&rft.date=2022-05&rft.volume=19&rft.issue=3&rft.spage=1453&rft.epage=1461&rft.pages=1453-1461&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13980&rft_dat=%3Cproquest_cross%3E2645872144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645872144&rft_id=info:pmid/&rfr_iscdi=true