Strengthening Effect of Multiscale Second Phases in Reduced Activation Ferrite/Martensitic Steel

Reduced activation ferrite/martensitic steels containing yttrium (Y), titanium (Ti), and zirconia (Zr) are melted using vacuum induction melting–electroslag remelting (ESR) to study the effects of second phases on the microstructure, tensile properties, and impact toughness of the alloys. In additio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2022-04, Vol.93 (4), p.n/a
Hauptverfasser: Qiu, Guo-xing, Du, Qing, Li, Xiao-ming, Xing, Xiang-dong, Zhan, Dong-ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Steel research international
container_volume 93
creator Qiu, Guo-xing
Du, Qing
Li, Xiao-ming
Xing, Xiang-dong
Zhan, Dong-ping
description Reduced activation ferrite/martensitic steels containing yttrium (Y), titanium (Ti), and zirconia (Zr) are melted using vacuum induction melting–electroslag remelting (ESR) to study the effects of second phases on the microstructure, tensile properties, and impact toughness of the alloys. In addition, two heat treatment processes are used to obtain the dispersed distribution of fine M23C6 carbides in reduced activation steel. The results show that ESR not only refined micron inclusions but also increase the number of submicron inclusions in the alloys. The number of submicron inclusions per unit volume of the ESR ingots is 1.11–1.43 × 1019 m−3. These inclusions not only reduced the austenite grain size through pinning but also effectively pinned dislocations to improve the mechanical properties of the steel. MX carbonitrides rather than M23C6 precipitated first in the steel with A–A–T heat treatment at 920 °C, decreasing the mean size of M23C6. The refined grain size, martensitic laths, and M23C6 are beneficial to the mechanical properties of the alloys. The yield strengths of the E–Y–Ti and E–Y–Zr alloys are 659 and 657 MPa, and their ductile–brittle transition temperatures are −93 and −86 °C, respectively. Effects of multiscale second phases on microstructures and properties of reduced activation ferritic martensitic (RAFM) steel were evaluated. Submicron inclusions not only reduced grain size by pinning but also effectively pinned dislocations. MX rather than M23C6 precipitated first in the A–A–T steel, decreasing the size of M23C6. Fine‐grain size, inclusion, and M23C6 lead to a balance of strength and impact toughness.
doi_str_mv 10.1002/srin.202100430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645822691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645822691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2470-a3a89bc0901afc2ecc49938f20d452150b95042285fd319987aa70352478f2153</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFSvngOet83XbpNjKa0WWpWugrc1zU7alDVbk6zSf--Wih6dy8zA88zAmyQ3BA8IxnQYvHUDimm3cIbPkh4RuUwZ56_n3ZwTkrJcsMvkOoQd7ooJkY94L3kroge3iVtw1m3Q1BjQETUGLds62qBVDagA3bgKPW1VgICsQyuoWg0VGutoP1W0jUMz8N5GGC6Vj-CCjVajIgLUV8mFUXWA65_eT15m0-fJfbp4vJtPxotUUz7CqWJKyLXGEhNlNAWtuZRMGIornlGS4bXMMKdUZKZiREoxUmqEWdbJHUQy1k9uT3f3vvloIcRy17TedS9LmvNMUJpL0lGDE6V9E4IHU-69fVf-UBJcHoMsj0GWv0F2gjwJX7aGwz90WazmD3_uN5-NdpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645822691</pqid></control><display><type>article</type><title>Strengthening Effect of Multiscale Second Phases in Reduced Activation Ferrite/Martensitic Steel</title><source>Wiley Journals</source><creator>Qiu, Guo-xing ; Du, Qing ; Li, Xiao-ming ; Xing, Xiang-dong ; Zhan, Dong-ping</creator><creatorcontrib>Qiu, Guo-xing ; Du, Qing ; Li, Xiao-ming ; Xing, Xiang-dong ; Zhan, Dong-ping</creatorcontrib><description>Reduced activation ferrite/martensitic steels containing yttrium (Y), titanium (Ti), and zirconia (Zr) are melted using vacuum induction melting–electroslag remelting (ESR) to study the effects of second phases on the microstructure, tensile properties, and impact toughness of the alloys. In addition, two heat treatment processes are used to obtain the dispersed distribution of fine M23C6 carbides in reduced activation steel. The results show that ESR not only refined micron inclusions but also increase the number of submicron inclusions in the alloys. The number of submicron inclusions per unit volume of the ESR ingots is 1.11–1.43 × 1019 m−3. These inclusions not only reduced the austenite grain size through pinning but also effectively pinned dislocations to improve the mechanical properties of the steel. MX carbonitrides rather than M23C6 precipitated first in the steel with A–A–T heat treatment at 920 °C, decreasing the mean size of M23C6. The refined grain size, martensitic laths, and M23C6 are beneficial to the mechanical properties of the alloys. The yield strengths of the E–Y–Ti and E–Y–Zr alloys are 659 and 657 MPa, and their ductile–brittle transition temperatures are −93 and −86 °C, respectively. Effects of multiscale second phases on microstructures and properties of reduced activation ferritic martensitic (RAFM) steel were evaluated. Submicron inclusions not only reduced grain size by pinning but also effectively pinned dislocations. MX rather than M23C6 precipitated first in the A–A–T steel, decreasing the size of M23C6. Fine‐grain size, inclusion, and M23C6 lead to a balance of strength and impact toughness.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202100430</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>carbide ; Carbon nitride ; Dislocation pinning ; Ductile-brittle transition ; Electroslag melting ; Electroslag remelting ; Grain size ; Heat treatment ; Impact strength ; Inclusions ; Martensitic stainless steels ; Mechanical properties ; mechanical property ; Melting ; microstructure ; reduced activation ferritic martensitic ; Steel ; Tensile properties ; Titanium ; Vacuum induction melting ; Yttrium ; Zirconium base alloys ; Zirconium dioxide</subject><ispartof>Steel research international, 2022-04, Vol.93 (4), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2470-a3a89bc0901afc2ecc49938f20d452150b95042285fd319987aa70352478f2153</citedby><cites>FETCH-LOGICAL-c2470-a3a89bc0901afc2ecc49938f20d452150b95042285fd319987aa70352478f2153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202100430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202100430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Qiu, Guo-xing</creatorcontrib><creatorcontrib>Du, Qing</creatorcontrib><creatorcontrib>Li, Xiao-ming</creatorcontrib><creatorcontrib>Xing, Xiang-dong</creatorcontrib><creatorcontrib>Zhan, Dong-ping</creatorcontrib><title>Strengthening Effect of Multiscale Second Phases in Reduced Activation Ferrite/Martensitic Steel</title><title>Steel research international</title><description>Reduced activation ferrite/martensitic steels containing yttrium (Y), titanium (Ti), and zirconia (Zr) are melted using vacuum induction melting–electroslag remelting (ESR) to study the effects of second phases on the microstructure, tensile properties, and impact toughness of the alloys. In addition, two heat treatment processes are used to obtain the dispersed distribution of fine M23C6 carbides in reduced activation steel. The results show that ESR not only refined micron inclusions but also increase the number of submicron inclusions in the alloys. The number of submicron inclusions per unit volume of the ESR ingots is 1.11–1.43 × 1019 m−3. These inclusions not only reduced the austenite grain size through pinning but also effectively pinned dislocations to improve the mechanical properties of the steel. MX carbonitrides rather than M23C6 precipitated first in the steel with A–A–T heat treatment at 920 °C, decreasing the mean size of M23C6. The refined grain size, martensitic laths, and M23C6 are beneficial to the mechanical properties of the alloys. The yield strengths of the E–Y–Ti and E–Y–Zr alloys are 659 and 657 MPa, and their ductile–brittle transition temperatures are −93 and −86 °C, respectively. Effects of multiscale second phases on microstructures and properties of reduced activation ferritic martensitic (RAFM) steel were evaluated. Submicron inclusions not only reduced grain size by pinning but also effectively pinned dislocations. MX rather than M23C6 precipitated first in the A–A–T steel, decreasing the size of M23C6. Fine‐grain size, inclusion, and M23C6 lead to a balance of strength and impact toughness.</description><subject>carbide</subject><subject>Carbon nitride</subject><subject>Dislocation pinning</subject><subject>Ductile-brittle transition</subject><subject>Electroslag melting</subject><subject>Electroslag remelting</subject><subject>Grain size</subject><subject>Heat treatment</subject><subject>Impact strength</subject><subject>Inclusions</subject><subject>Martensitic stainless steels</subject><subject>Mechanical properties</subject><subject>mechanical property</subject><subject>Melting</subject><subject>microstructure</subject><subject>reduced activation ferritic martensitic</subject><subject>Steel</subject><subject>Tensile properties</subject><subject>Titanium</subject><subject>Vacuum induction melting</subject><subject>Yttrium</subject><subject>Zirconium base alloys</subject><subject>Zirconium dioxide</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsFSvngOet83XbpNjKa0WWpWugrc1zU7alDVbk6zSf--Wih6dy8zA88zAmyQ3BA8IxnQYvHUDimm3cIbPkh4RuUwZ56_n3ZwTkrJcsMvkOoQd7ooJkY94L3kroge3iVtw1m3Q1BjQETUGLds62qBVDagA3bgKPW1VgICsQyuoWg0VGutoP1W0jUMz8N5GGC6Vj-CCjVajIgLUV8mFUXWA65_eT15m0-fJfbp4vJtPxotUUz7CqWJKyLXGEhNlNAWtuZRMGIornlGS4bXMMKdUZKZiREoxUmqEWdbJHUQy1k9uT3f3vvloIcRy17TedS9LmvNMUJpL0lGDE6V9E4IHU-69fVf-UBJcHoMsj0GWv0F2gjwJX7aGwz90WazmD3_uN5-NdpE</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Qiu, Guo-xing</creator><creator>Du, Qing</creator><creator>Li, Xiao-ming</creator><creator>Xing, Xiang-dong</creator><creator>Zhan, Dong-ping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202204</creationdate><title>Strengthening Effect of Multiscale Second Phases in Reduced Activation Ferrite/Martensitic Steel</title><author>Qiu, Guo-xing ; Du, Qing ; Li, Xiao-ming ; Xing, Xiang-dong ; Zhan, Dong-ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2470-a3a89bc0901afc2ecc49938f20d452150b95042285fd319987aa70352478f2153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>carbide</topic><topic>Carbon nitride</topic><topic>Dislocation pinning</topic><topic>Ductile-brittle transition</topic><topic>Electroslag melting</topic><topic>Electroslag remelting</topic><topic>Grain size</topic><topic>Heat treatment</topic><topic>Impact strength</topic><topic>Inclusions</topic><topic>Martensitic stainless steels</topic><topic>Mechanical properties</topic><topic>mechanical property</topic><topic>Melting</topic><topic>microstructure</topic><topic>reduced activation ferritic martensitic</topic><topic>Steel</topic><topic>Tensile properties</topic><topic>Titanium</topic><topic>Vacuum induction melting</topic><topic>Yttrium</topic><topic>Zirconium base alloys</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Guo-xing</creatorcontrib><creatorcontrib>Du, Qing</creatorcontrib><creatorcontrib>Li, Xiao-ming</creatorcontrib><creatorcontrib>Xing, Xiang-dong</creatorcontrib><creatorcontrib>Zhan, Dong-ping</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Guo-xing</au><au>Du, Qing</au><au>Li, Xiao-ming</au><au>Xing, Xiang-dong</au><au>Zhan, Dong-ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening Effect of Multiscale Second Phases in Reduced Activation Ferrite/Martensitic Steel</atitle><jtitle>Steel research international</jtitle><date>2022-04</date><risdate>2022</risdate><volume>93</volume><issue>4</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>Reduced activation ferrite/martensitic steels containing yttrium (Y), titanium (Ti), and zirconia (Zr) are melted using vacuum induction melting–electroslag remelting (ESR) to study the effects of second phases on the microstructure, tensile properties, and impact toughness of the alloys. In addition, two heat treatment processes are used to obtain the dispersed distribution of fine M23C6 carbides in reduced activation steel. The results show that ESR not only refined micron inclusions but also increase the number of submicron inclusions in the alloys. The number of submicron inclusions per unit volume of the ESR ingots is 1.11–1.43 × 1019 m−3. These inclusions not only reduced the austenite grain size through pinning but also effectively pinned dislocations to improve the mechanical properties of the steel. MX carbonitrides rather than M23C6 precipitated first in the steel with A–A–T heat treatment at 920 °C, decreasing the mean size of M23C6. The refined grain size, martensitic laths, and M23C6 are beneficial to the mechanical properties of the alloys. The yield strengths of the E–Y–Ti and E–Y–Zr alloys are 659 and 657 MPa, and their ductile–brittle transition temperatures are −93 and −86 °C, respectively. Effects of multiscale second phases on microstructures and properties of reduced activation ferritic martensitic (RAFM) steel were evaluated. Submicron inclusions not only reduced grain size by pinning but also effectively pinned dislocations. MX rather than M23C6 precipitated first in the A–A–T steel, decreasing the size of M23C6. Fine‐grain size, inclusion, and M23C6 lead to a balance of strength and impact toughness.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202100430</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2022-04, Vol.93 (4), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_proquest_journals_2645822691
source Wiley Journals
subjects carbide
Carbon nitride
Dislocation pinning
Ductile-brittle transition
Electroslag melting
Electroslag remelting
Grain size
Heat treatment
Impact strength
Inclusions
Martensitic stainless steels
Mechanical properties
mechanical property
Melting
microstructure
reduced activation ferritic martensitic
Steel
Tensile properties
Titanium
Vacuum induction melting
Yttrium
Zirconium base alloys
Zirconium dioxide
title Strengthening Effect of Multiscale Second Phases in Reduced Activation Ferrite/Martensitic Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20Effect%20of%20Multiscale%20Second%20Phases%20in%20Reduced%20Activation%20Ferrite/Martensitic%20Steel&rft.jtitle=Steel%20research%20international&rft.au=Qiu,%20Guo-xing&rft.date=2022-04&rft.volume=93&rft.issue=4&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202100430&rft_dat=%3Cproquest_cross%3E2645822691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645822691&rft_id=info:pmid/&rfr_iscdi=true