An Efficient Anchor-free Universal Lesion Detection in CT-scans
Existing universal lesion detection (ULD) methods utilize compute-intensive anchor-based architectures which rely on predefined anchor boxes, resulting in unsatisfactory detection performance, especially in small and mid-sized lesions. Further, these default fixed anchor-sizes and ratios do not gene...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sheoran, Manu Meghal Dani Sharma, Monika Vig, Lovekesh |
description | Existing universal lesion detection (ULD) methods utilize compute-intensive anchor-based architectures which rely on predefined anchor boxes, resulting in unsatisfactory detection performance, especially in small and mid-sized lesions. Further, these default fixed anchor-sizes and ratios do not generalize well to different datasets. Therefore, we propose a robust one-stage anchor-free lesion detection network that can perform well across varying lesions sizes by exploiting the fact that the box predictions can be sorted for relevance based on their center rather than their overlap with the object. Furthermore, we demonstrate that the ULD can be improved by explicitly providing it the domain-specific information in the form of multi-intensity images generated using multiple HU windows, followed by self-attention based feature-fusion and backbone initialization using weights learned via self-supervision over CT-scans. We obtain comparable results to the state-of-the-art methods, achieving an overall sensitivity of 86.05% on the DeepLesion dataset, which comprises of approximately 32K CT-scans with lesions annotated across various body organs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2645689948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645689948</sourcerecordid><originalsourceid>FETCH-proquest_journals_26456899483</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoe2KamTyFm9NCjPcsYdziRu9qdfX8FfUBP58A5K5ZIpQ6iyqXcsJRoyrJMlkdZFCphpwZ5Z60zDjDyBs3og7ABgN_RvSCQnvkNyHnkZ4hg4tcc8rYXZDTSjq2tngnSH7dsf-n69ioewT8XoDhMfgn4SYMs86Ks6jqv1H_XG5DWN_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645689948</pqid></control><display><type>article</type><title>An Efficient Anchor-free Universal Lesion Detection in CT-scans</title><source>Free E- Journals</source><creator>Sheoran, Manu ; Meghal Dani ; Sharma, Monika ; Vig, Lovekesh</creator><creatorcontrib>Sheoran, Manu ; Meghal Dani ; Sharma, Monika ; Vig, Lovekesh</creatorcontrib><description>Existing universal lesion detection (ULD) methods utilize compute-intensive anchor-based architectures which rely on predefined anchor boxes, resulting in unsatisfactory detection performance, especially in small and mid-sized lesions. Further, these default fixed anchor-sizes and ratios do not generalize well to different datasets. Therefore, we propose a robust one-stage anchor-free lesion detection network that can perform well across varying lesions sizes by exploiting the fact that the box predictions can be sorted for relevance based on their center rather than their overlap with the object. Furthermore, we demonstrate that the ULD can be improved by explicitly providing it the domain-specific information in the form of multi-intensity images generated using multiple HU windows, followed by self-attention based feature-fusion and backbone initialization using weights learned via self-supervision over CT-scans. We obtain comparable results to the state-of-the-art methods, achieving an overall sensitivity of 86.05% on the DeepLesion dataset, which comprises of approximately 32K CT-scans with lesions annotated across various body organs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computed tomography ; Datasets ; Lesions</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sheoran, Manu</creatorcontrib><creatorcontrib>Meghal Dani</creatorcontrib><creatorcontrib>Sharma, Monika</creatorcontrib><creatorcontrib>Vig, Lovekesh</creatorcontrib><title>An Efficient Anchor-free Universal Lesion Detection in CT-scans</title><title>arXiv.org</title><description>Existing universal lesion detection (ULD) methods utilize compute-intensive anchor-based architectures which rely on predefined anchor boxes, resulting in unsatisfactory detection performance, especially in small and mid-sized lesions. Further, these default fixed anchor-sizes and ratios do not generalize well to different datasets. Therefore, we propose a robust one-stage anchor-free lesion detection network that can perform well across varying lesions sizes by exploiting the fact that the box predictions can be sorted for relevance based on their center rather than their overlap with the object. Furthermore, we demonstrate that the ULD can be improved by explicitly providing it the domain-specific information in the form of multi-intensity images generated using multiple HU windows, followed by self-attention based feature-fusion and backbone initialization using weights learned via self-supervision over CT-scans. We obtain comparable results to the state-of-the-art methods, achieving an overall sensitivity of 86.05% on the DeepLesion dataset, which comprises of approximately 32K CT-scans with lesions annotated across various body organs.</description><subject>Computed tomography</subject><subject>Datasets</subject><subject>Lesions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoe2KamTyFm9NCjPcsYdziRu9qdfX8FfUBP58A5K5ZIpQ6iyqXcsJRoyrJMlkdZFCphpwZ5Z60zDjDyBs3og7ABgN_RvSCQnvkNyHnkZ4hg4tcc8rYXZDTSjq2tngnSH7dsf-n69ioewT8XoDhMfgn4SYMs86Ks6jqv1H_XG5DWN_k</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Sheoran, Manu</creator><creator>Meghal Dani</creator><creator>Sharma, Monika</creator><creator>Vig, Lovekesh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220330</creationdate><title>An Efficient Anchor-free Universal Lesion Detection in CT-scans</title><author>Sheoran, Manu ; Meghal Dani ; Sharma, Monika ; Vig, Lovekesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26456899483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computed tomography</topic><topic>Datasets</topic><topic>Lesions</topic><toplevel>online_resources</toplevel><creatorcontrib>Sheoran, Manu</creatorcontrib><creatorcontrib>Meghal Dani</creatorcontrib><creatorcontrib>Sharma, Monika</creatorcontrib><creatorcontrib>Vig, Lovekesh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheoran, Manu</au><au>Meghal Dani</au><au>Sharma, Monika</au><au>Vig, Lovekesh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Efficient Anchor-free Universal Lesion Detection in CT-scans</atitle><jtitle>arXiv.org</jtitle><date>2022-03-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Existing universal lesion detection (ULD) methods utilize compute-intensive anchor-based architectures which rely on predefined anchor boxes, resulting in unsatisfactory detection performance, especially in small and mid-sized lesions. Further, these default fixed anchor-sizes and ratios do not generalize well to different datasets. Therefore, we propose a robust one-stage anchor-free lesion detection network that can perform well across varying lesions sizes by exploiting the fact that the box predictions can be sorted for relevance based on their center rather than their overlap with the object. Furthermore, we demonstrate that the ULD can be improved by explicitly providing it the domain-specific information in the form of multi-intensity images generated using multiple HU windows, followed by self-attention based feature-fusion and backbone initialization using weights learned via self-supervision over CT-scans. We obtain comparable results to the state-of-the-art methods, achieving an overall sensitivity of 86.05% on the DeepLesion dataset, which comprises of approximately 32K CT-scans with lesions annotated across various body organs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2645689948 |
source | Free E- Journals |
subjects | Computed tomography Datasets Lesions |
title | An Efficient Anchor-free Universal Lesion Detection in CT-scans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Efficient%20Anchor-free%20Universal%20Lesion%20Detection%20in%20CT-scans&rft.jtitle=arXiv.org&rft.au=Sheoran,%20Manu&rft.date=2022-03-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2645689948%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645689948&rft_id=info:pmid/&rfr_iscdi=true |