A Sequential Quadratic Programming Approach to the Solution of Open-Loop Generalized Nash Equilibria

Dynamic games can be an effective approach to modeling interactive behavior between multiple non-cooperative agents and they provide a theoretical framework for simultaneous prediction and control in such scenarios. In this work, we propose a numerical method for the solution of local generalized Na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Zhu, Edward L, Borrelli, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhu, Edward L
Borrelli, Francesco
description Dynamic games can be an effective approach to modeling interactive behavior between multiple non-cooperative agents and they provide a theoretical framework for simultaneous prediction and control in such scenarios. In this work, we propose a numerical method for the solution of local generalized Nash equilibria (GNE) for the class of open-loop general-sum dynamic games for agents with nonlinear dynamics and constraints. In particular, we formulate a sequential quadratic programming (SQP) approach which requires only the solution of a single convex quadratic program at each iteration. Central to the robustness of our approach is a non-monotonic line search method and a novel merit function for SQP step acceptance. We show that our method achieves linear convergence in the neighborhood of local GNE and we derive an update rule for the merit function which helps to improve convergence from a larger set of initial conditions. We demonstrate the effectiveness of the algorithm in the context of car racing, where we show up to 32\% improvement of success rate when comparing against a state-of-the-art solution approach for dynamic games. \url{https://github.com/zhu-edward/DGSQP}.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2645684002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645684002</sourcerecordid><originalsourceid>FETCH-proquest_journals_26456840023</originalsourceid><addsrcrecordid>eNqNjskKwjAURYMgKOo_PHBdqOlgt0UcFuKA7uVp0zYS82KGjV9vFn6Aq7u4h3vugI15li2SKud8xGbOPdM05eWSF0U2Zk0NF_EOQnuJCs4BG4tePuBkqbP4ekndQW2MJXz04Al8L-BCKnhJGqiFoxE62RMZ2AotLCr5EQ0c0PWwfgep5N1KnLJhi8qJ2S8nbL5ZX1e7JO5Gt_O3JwWrY3XjZV6UVR4fZv9RX_EGRgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645684002</pqid></control><display><type>article</type><title>A Sequential Quadratic Programming Approach to the Solution of Open-Loop Generalized Nash Equilibria</title><source>Free E- Journals</source><creator>Zhu, Edward L ; Borrelli, Francesco</creator><creatorcontrib>Zhu, Edward L ; Borrelli, Francesco</creatorcontrib><description>Dynamic games can be an effective approach to modeling interactive behavior between multiple non-cooperative agents and they provide a theoretical framework for simultaneous prediction and control in such scenarios. In this work, we propose a numerical method for the solution of local generalized Nash equilibria (GNE) for the class of open-loop general-sum dynamic games for agents with nonlinear dynamics and constraints. In particular, we formulate a sequential quadratic programming (SQP) approach which requires only the solution of a single convex quadratic program at each iteration. Central to the robustness of our approach is a non-monotonic line search method and a novel merit function for SQP step acceptance. We show that our method achieves linear convergence in the neighborhood of local GNE and we derive an update rule for the merit function which helps to improve convergence from a larger set of initial conditions. We demonstrate the effectiveness of the algorithm in the context of car racing, where we show up to 32\% improvement of success rate when comparing against a state-of-the-art solution approach for dynamic games. \url{https://github.com/zhu-edward/DGSQP}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convergence ; Game theory ; Games ; Initial conditions ; Iterative methods ; Nonlinear dynamics ; Numerical methods ; Quadratic programming ; Racing ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Zhu, Edward L</creatorcontrib><creatorcontrib>Borrelli, Francesco</creatorcontrib><title>A Sequential Quadratic Programming Approach to the Solution of Open-Loop Generalized Nash Equilibria</title><title>arXiv.org</title><description>Dynamic games can be an effective approach to modeling interactive behavior between multiple non-cooperative agents and they provide a theoretical framework for simultaneous prediction and control in such scenarios. In this work, we propose a numerical method for the solution of local generalized Nash equilibria (GNE) for the class of open-loop general-sum dynamic games for agents with nonlinear dynamics and constraints. In particular, we formulate a sequential quadratic programming (SQP) approach which requires only the solution of a single convex quadratic program at each iteration. Central to the robustness of our approach is a non-monotonic line search method and a novel merit function for SQP step acceptance. We show that our method achieves linear convergence in the neighborhood of local GNE and we derive an update rule for the merit function which helps to improve convergence from a larger set of initial conditions. We demonstrate the effectiveness of the algorithm in the context of car racing, where we show up to 32\% improvement of success rate when comparing against a state-of-the-art solution approach for dynamic games. \url{https://github.com/zhu-edward/DGSQP}.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Game theory</subject><subject>Games</subject><subject>Initial conditions</subject><subject>Iterative methods</subject><subject>Nonlinear dynamics</subject><subject>Numerical methods</subject><subject>Quadratic programming</subject><subject>Racing</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjskKwjAURYMgKOo_PHBdqOlgt0UcFuKA7uVp0zYS82KGjV9vFn6Aq7u4h3vugI15li2SKud8xGbOPdM05eWSF0U2Zk0NF_EOQnuJCs4BG4tePuBkqbP4ekndQW2MJXz04Al8L-BCKnhJGqiFoxE62RMZ2AotLCr5EQ0c0PWwfgep5N1KnLJhi8qJ2S8nbL5ZX1e7JO5Gt_O3JwWrY3XjZV6UVR4fZv9RX_EGRgg</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Zhu, Edward L</creator><creator>Borrelli, Francesco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220915</creationdate><title>A Sequential Quadratic Programming Approach to the Solution of Open-Loop Generalized Nash Equilibria</title><author>Zhu, Edward L ; Borrelli, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26456840023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Game theory</topic><topic>Games</topic><topic>Initial conditions</topic><topic>Iterative methods</topic><topic>Nonlinear dynamics</topic><topic>Numerical methods</topic><topic>Quadratic programming</topic><topic>Racing</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Edward L</creatorcontrib><creatorcontrib>Borrelli, Francesco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Edward L</au><au>Borrelli, Francesco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Sequential Quadratic Programming Approach to the Solution of Open-Loop Generalized Nash Equilibria</atitle><jtitle>arXiv.org</jtitle><date>2022-09-15</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Dynamic games can be an effective approach to modeling interactive behavior between multiple non-cooperative agents and they provide a theoretical framework for simultaneous prediction and control in such scenarios. In this work, we propose a numerical method for the solution of local generalized Nash equilibria (GNE) for the class of open-loop general-sum dynamic games for agents with nonlinear dynamics and constraints. In particular, we formulate a sequential quadratic programming (SQP) approach which requires only the solution of a single convex quadratic program at each iteration. Central to the robustness of our approach is a non-monotonic line search method and a novel merit function for SQP step acceptance. We show that our method achieves linear convergence in the neighborhood of local GNE and we derive an update rule for the merit function which helps to improve convergence from a larger set of initial conditions. We demonstrate the effectiveness of the algorithm in the context of car racing, where we show up to 32\% improvement of success rate when comparing against a state-of-the-art solution approach for dynamic games. \url{https://github.com/zhu-edward/DGSQP}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2645684002
source Free E- Journals
subjects Algorithms
Convergence
Game theory
Games
Initial conditions
Iterative methods
Nonlinear dynamics
Numerical methods
Quadratic programming
Racing
Robustness (mathematics)
title A Sequential Quadratic Programming Approach to the Solution of Open-Loop Generalized Nash Equilibria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Sequential%20Quadratic%20Programming%20Approach%20to%20the%20Solution%20of%20Open-Loop%20Generalized%20Nash%20Equilibria&rft.jtitle=arXiv.org&rft.au=Zhu,%20Edward%20L&rft.date=2022-09-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2645684002%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645684002&rft_id=info:pmid/&rfr_iscdi=true