Verification of a Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Concentrated Solar Radiation

In this study the results of the analysis of the dependence of the temperature of solar cells (SCs) and thermoelectric generators (TEGs) and the overall electrical and thermal efficiency of the PVT–TEG combined system on thermal characteristics and environment are presented. The hot side of a TEG mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied solar energy 2021-10, Vol.57 (5), p.384-390
Hauptverfasser: Shoguchkarov, S. K., Halimov, A. S., Yuldoshev, I. A., Jamolov, T. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 5
container_start_page 384
container_title Applied solar energy
container_volume 57
creator Shoguchkarov, S. K.
Halimov, A. S.
Yuldoshev, I. A.
Jamolov, T. R.
description In this study the results of the analysis of the dependence of the temperature of solar cells (SCs) and thermoelectric generators (TEGs) and the overall electrical and thermal efficiency of the PVT–TEG combined system on thermal characteristics and environment are presented. The hot side of a TEG module is attached to the back side of the photovoltaic module (PVM). The heat carrier circulating through the absorber cools down the cold side of the TEG module, where the temperature gradient is converted into additional electrical energy. The mathematical model for a PVT–TEG combined setup was realized in the MathCAD program. The agreement between numerical calculations and experimental data was analyzed using the “goodness of fit.” Experimental measurements were carried out at the Heliopolygon at Tashkent State Technical University. The solar radiation flux density, ambient temperature, wind speed, open circuit voltage, short-circuit current, temperatures of the PVM, the thermo-electromotive force, and the current of TEG were measured without and with reflectors oriented to the south at a horizontal angle of 25°. However, in order to verify the model, the calculated and experimental data of the output power of the combined PVT–TEG setup were compared. It was revealed that the root-mean-square deviation (RMSD) of the peak power of the experimental and calculated data was 1.74 W, or 4.8%.
doi_str_mv 10.3103/S0003701X21050121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645508677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645508677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-f9a5ba9ac267440a7d0a974d74277f25c211638cd620dce16122d6abd8ab4a6d3</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrf4AbwHPq0k2m-wepWgVWhTbirflNcm2W7ZJTVLBmz_dtBU8iKfhzccbGIQuKbnOKclvJoSQXBL6xigpCGX0CPVolfOs4owfo95Oznb6KToLYZUuwkraQ1-vxrdNqyC2zmLXYMBjiEuzToSCDo-dNh1unE_C89JF9-G6CK3C06Xxa-iyPTrTGRV9oofGGg8x-We2jXgWWrvAA2eVsTHxRuOJ68DjF9DtvvMcnTTQBXPxg300u7-bDh6y0dPwcXA7yhTLKc2aCoo5VKCYkJwTkJpAJbmWnEnZsEIxSkVeKi0Y0cpQQRnTAua6hDkHofM-ujr83Xj3vjUh1iu39TZV1kzwoiClkDK56MGlvAvBm6be-HYN_rOmpN4NXf8ZOmXYIROS1y6M__38f-gbc-aA7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645508677</pqid></control><display><type>article</type><title>Verification of a Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Concentrated Solar Radiation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shoguchkarov, S. K. ; Halimov, A. S. ; Yuldoshev, I. A. ; Jamolov, T. R.</creator><creatorcontrib>Shoguchkarov, S. K. ; Halimov, A. S. ; Yuldoshev, I. A. ; Jamolov, T. R.</creatorcontrib><description>In this study the results of the analysis of the dependence of the temperature of solar cells (SCs) and thermoelectric generators (TEGs) and the overall electrical and thermal efficiency of the PVT–TEG combined system on thermal characteristics and environment are presented. The hot side of a TEG module is attached to the back side of the photovoltaic module (PVM). The heat carrier circulating through the absorber cools down the cold side of the TEG module, where the temperature gradient is converted into additional electrical energy. The mathematical model for a PVT–TEG combined setup was realized in the MathCAD program. The agreement between numerical calculations and experimental data was analyzed using the “goodness of fit.” Experimental measurements were carried out at the Heliopolygon at Tashkent State Technical University. The solar radiation flux density, ambient temperature, wind speed, open circuit voltage, short-circuit current, temperatures of the PVM, the thermo-electromotive force, and the current of TEG were measured without and with reflectors oriented to the south at a horizontal angle of 25°. However, in order to verify the model, the calculated and experimental data of the output power of the combined PVT–TEG setup were compared. It was revealed that the root-mean-square deviation (RMSD) of the peak power of the experimental and calculated data was 1.74 W, or 4.8%.</description><identifier>ISSN: 0003-701X</identifier><identifier>EISSN: 1934-9424</identifier><identifier>DOI: 10.3103/S0003701X21050121</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Ambient temperature ; Circuits ; Electric potential ; Electrical Machines and Networks ; Electromotive forces ; Engineering ; Experimental data ; Flux density ; Goodness of fit ; Mathematical analysis ; Mathematical models ; Modules ; Open circuit voltage ; Photovoltaic cells ; Photovoltaics ; Power Electronics ; Radiation ; Reflectors ; Short circuit currents ; Short-circuit current ; Solar cells ; Solar energy ; Solar Installations and Their Application ; Solar radiation ; Temperature ; Temperature dependence ; Temperature gradients ; Thermodynamic efficiency ; Thermoelectric generators ; Thermoelectricity ; Wind speed</subject><ispartof>Applied solar energy, 2021-10, Vol.57 (5), p.384-390</ispartof><rights>Allerton Press, Inc. 2021. ISSN 0003-701X, Applied Solar Energy, 2021, Vol. 57, No. 5, pp. 384–390. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Geliotekhnika, 2021, No. 5, pp. 504–513.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-f9a5ba9ac267440a7d0a974d74277f25c211638cd620dce16122d6abd8ab4a6d3</citedby><cites>FETCH-LOGICAL-c2311-f9a5ba9ac267440a7d0a974d74277f25c211638cd620dce16122d6abd8ab4a6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0003701X21050121$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0003701X21050121$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Shoguchkarov, S. K.</creatorcontrib><creatorcontrib>Halimov, A. S.</creatorcontrib><creatorcontrib>Yuldoshev, I. A.</creatorcontrib><creatorcontrib>Jamolov, T. R.</creatorcontrib><title>Verification of a Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Concentrated Solar Radiation</title><title>Applied solar energy</title><addtitle>Appl. Sol. Energy</addtitle><description>In this study the results of the analysis of the dependence of the temperature of solar cells (SCs) and thermoelectric generators (TEGs) and the overall electrical and thermal efficiency of the PVT–TEG combined system on thermal characteristics and environment are presented. The hot side of a TEG module is attached to the back side of the photovoltaic module (PVM). The heat carrier circulating through the absorber cools down the cold side of the TEG module, where the temperature gradient is converted into additional electrical energy. The mathematical model for a PVT–TEG combined setup was realized in the MathCAD program. The agreement between numerical calculations and experimental data was analyzed using the “goodness of fit.” Experimental measurements were carried out at the Heliopolygon at Tashkent State Technical University. The solar radiation flux density, ambient temperature, wind speed, open circuit voltage, short-circuit current, temperatures of the PVM, the thermo-electromotive force, and the current of TEG were measured without and with reflectors oriented to the south at a horizontal angle of 25°. However, in order to verify the model, the calculated and experimental data of the output power of the combined PVT–TEG setup were compared. It was revealed that the root-mean-square deviation (RMSD) of the peak power of the experimental and calculated data was 1.74 W, or 4.8%.</description><subject>Ambient temperature</subject><subject>Circuits</subject><subject>Electric potential</subject><subject>Electrical Machines and Networks</subject><subject>Electromotive forces</subject><subject>Engineering</subject><subject>Experimental data</subject><subject>Flux density</subject><subject>Goodness of fit</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Power Electronics</subject><subject>Radiation</subject><subject>Reflectors</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar Installations and Their Application</subject><subject>Solar radiation</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature gradients</subject><subject>Thermodynamic efficiency</subject><subject>Thermoelectric generators</subject><subject>Thermoelectricity</subject><subject>Wind speed</subject><issn>0003-701X</issn><issn>1934-9424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrf4AbwHPq0k2m-wepWgVWhTbirflNcm2W7ZJTVLBmz_dtBU8iKfhzccbGIQuKbnOKclvJoSQXBL6xigpCGX0CPVolfOs4owfo95Oznb6KToLYZUuwkraQ1-vxrdNqyC2zmLXYMBjiEuzToSCDo-dNh1unE_C89JF9-G6CK3C06Xxa-iyPTrTGRV9oofGGg8x-We2jXgWWrvAA2eVsTHxRuOJ68DjF9DtvvMcnTTQBXPxg300u7-bDh6y0dPwcXA7yhTLKc2aCoo5VKCYkJwTkJpAJbmWnEnZsEIxSkVeKi0Y0cpQQRnTAua6hDkHofM-ujr83Xj3vjUh1iu39TZV1kzwoiClkDK56MGlvAvBm6be-HYN_rOmpN4NXf8ZOmXYIROS1y6M__38f-gbc-aA7A</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Shoguchkarov, S. K.</creator><creator>Halimov, A. S.</creator><creator>Yuldoshev, I. A.</creator><creator>Jamolov, T. R.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20211001</creationdate><title>Verification of a Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Concentrated Solar Radiation</title><author>Shoguchkarov, S. K. ; Halimov, A. S. ; Yuldoshev, I. A. ; Jamolov, T. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-f9a5ba9ac267440a7d0a974d74277f25c211638cd620dce16122d6abd8ab4a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ambient temperature</topic><topic>Circuits</topic><topic>Electric potential</topic><topic>Electrical Machines and Networks</topic><topic>Electromotive forces</topic><topic>Engineering</topic><topic>Experimental data</topic><topic>Flux density</topic><topic>Goodness of fit</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Power Electronics</topic><topic>Radiation</topic><topic>Reflectors</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar Installations and Their Application</topic><topic>Solar radiation</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature gradients</topic><topic>Thermodynamic efficiency</topic><topic>Thermoelectric generators</topic><topic>Thermoelectricity</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoguchkarov, S. K.</creatorcontrib><creatorcontrib>Halimov, A. S.</creatorcontrib><creatorcontrib>Yuldoshev, I. A.</creatorcontrib><creatorcontrib>Jamolov, T. R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoguchkarov, S. K.</au><au>Halimov, A. S.</au><au>Yuldoshev, I. A.</au><au>Jamolov, T. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Verification of a Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Concentrated Solar Radiation</atitle><jtitle>Applied solar energy</jtitle><stitle>Appl. Sol. Energy</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>57</volume><issue>5</issue><spage>384</spage><epage>390</epage><pages>384-390</pages><issn>0003-701X</issn><eissn>1934-9424</eissn><abstract>In this study the results of the analysis of the dependence of the temperature of solar cells (SCs) and thermoelectric generators (TEGs) and the overall electrical and thermal efficiency of the PVT–TEG combined system on thermal characteristics and environment are presented. The hot side of a TEG module is attached to the back side of the photovoltaic module (PVM). The heat carrier circulating through the absorber cools down the cold side of the TEG module, where the temperature gradient is converted into additional electrical energy. The mathematical model for a PVT–TEG combined setup was realized in the MathCAD program. The agreement between numerical calculations and experimental data was analyzed using the “goodness of fit.” Experimental measurements were carried out at the Heliopolygon at Tashkent State Technical University. The solar radiation flux density, ambient temperature, wind speed, open circuit voltage, short-circuit current, temperatures of the PVM, the thermo-electromotive force, and the current of TEG were measured without and with reflectors oriented to the south at a horizontal angle of 25°. However, in order to verify the model, the calculated and experimental data of the output power of the combined PVT–TEG setup were compared. It was revealed that the root-mean-square deviation (RMSD) of the peak power of the experimental and calculated data was 1.74 W, or 4.8%.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0003701X21050121</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-701X
ispartof Applied solar energy, 2021-10, Vol.57 (5), p.384-390
issn 0003-701X
1934-9424
language eng
recordid cdi_proquest_journals_2645508677
source SpringerLink Journals - AutoHoldings
subjects Ambient temperature
Circuits
Electric potential
Electrical Machines and Networks
Electromotive forces
Engineering
Experimental data
Flux density
Goodness of fit
Mathematical analysis
Mathematical models
Modules
Open circuit voltage
Photovoltaic cells
Photovoltaics
Power Electronics
Radiation
Reflectors
Short circuit currents
Short-circuit current
Solar cells
Solar energy
Solar Installations and Their Application
Solar radiation
Temperature
Temperature dependence
Temperature gradients
Thermodynamic efficiency
Thermoelectric generators
Thermoelectricity
Wind speed
title Verification of a Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Concentrated Solar Radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Verification%20of%20a%20Mathematical%20Model%20for%20a%20Photovoltaic%20Thermal-Thermoelectric%20Generator%20Unit%20Using%20Concentrated%20Solar%20Radiation&rft.jtitle=Applied%20solar%20energy&rft.au=Shoguchkarov,%20S.%20K.&rft.date=2021-10-01&rft.volume=57&rft.issue=5&rft.spage=384&rft.epage=390&rft.pages=384-390&rft.issn=0003-701X&rft.eissn=1934-9424&rft_id=info:doi/10.3103/S0003701X21050121&rft_dat=%3Cproquest_cross%3E2645508677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645508677&rft_id=info:pmid/&rfr_iscdi=true