Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction

Continuous monitoring of the spatio-temporal dynamic behavior of critical infrastructure networks, such as the power systems, is a challenging but important task. In particular, accurate and timely prediction of the (electro-mechanical) transient dynamic trajectories of the power grid is necessary f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022-01, Vol.10, p.32337-32349
Hauptverfasser: Nandanoori, Sai Pushpak, Guan, Sheng, Kundu, Soumya, Pal, Seemita, Agarwal, Khushbu, Wu, Yinghui, Choudhury, Sutanay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32349
container_issue
container_start_page 32337
container_title IEEE access
container_volume 10
creator Nandanoori, Sai Pushpak
Guan, Sheng
Kundu, Soumya
Pal, Seemita
Agarwal, Khushbu
Wu, Yinghui
Choudhury, Sutanay
description Continuous monitoring of the spatio-temporal dynamic behavior of critical infrastructure networks, such as the power systems, is a challenging but important task. In particular, accurate and timely prediction of the (electro-mechanical) transient dynamic trajectories of the power grid is necessary for early detection of any instability and prevention of catastrophic failures. Existing approaches for prediction of dynamic trajectories either rely on the availability of accurate physical models of the system, use computationally expensive time-domain simulations, or are applicable only at local prediction problems (e.g., a single generator). In this paper, we report the application of two broad classes of data-driven learning models - along with their algorithmic implementation and performance evaluation - in predicting transient trajectories in power networks using only streaming measurements and the network topology as input. One class of models is based on the Koopman operator theory which allows for capturing the nonlinear dynamic behavior via an infinite-dimensional linear operator. The other class of models is based on the graph convolutional neural networks which are adept at capturing the inherent spatio-temporal correlations within the power network. Transient dynamic datasets for training and testing the models are synthesized by simulating a wide variety of load change events in the IEEE 68-bus system, categorized by the load change magnitudes, as well as by the degree of connectivity and the distance to nearest generator nodes. The results confirm that the proposed predictive models can successfully predict the post-disturbance transient evolution of the system with a high level of accuracy.
doi_str_mv 10.1109/ACCESS.2022.3160710
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2645247835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9738598</ieee_id><doaj_id>oai_doaj_org_article_4782b514f4f14b8aa3dd10f1ed162b00</doaj_id><sourcerecordid>2645247835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-7095a119fcf3d8e0aed8d6064a88ed7bf4d391cab0e647c3a786588c005f629f3</originalsourceid><addsrcrecordid>eNpNkUFvEzEQhVcIJKq0v6AXC84J9nrX6-UWLW2oCFAp5WzN2uPWIbEX26HKjZ_eDVsqfBlr9N6bGX1FccnogjHaflh23dVmsyhpWS44E7Rh9FVxVjLRznnNxev__m-Li5S2dHxybNXNWfFnFWF4IN_wEGE3lvwY4k8C3pAvIQx78ORrMLhLxIZI1gjRO3__T4eGfDp62DudPpIl6cJ-gAjZ_UayyQdzJMGT2_CIkayiM-Qugk8OfU7kNqJxOrvgz4s3FnYJL57rrPhxfXXXfZ6vv69uuuV6rite53lD2xoYa6223EikgEYaQUUFUqJpelsZ3jINPUVRNZpDI0Utpaa0tqJsLZ8VN1OuCbBVQ3R7iEcVwKm_jRDvFcTs9A5V1ciyr1llK8uqXgJwYxi1DA0TZU_pmPVuygopO5W0y6gfdPAedVZM1m0jTqL3k2iI4dcBU1bbcIh-vFGVoqrLccqIZFbwSaVjSCmifVmNUXXCqya86oRXPeMdXZeTyyHii6Nt-Dhb8ic7dKD0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645247835</pqid></control><display><type>article</type><title>Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nandanoori, Sai Pushpak ; Guan, Sheng ; Kundu, Soumya ; Pal, Seemita ; Agarwal, Khushbu ; Wu, Yinghui ; Choudhury, Sutanay</creator><creatorcontrib>Nandanoori, Sai Pushpak ; Guan, Sheng ; Kundu, Soumya ; Pal, Seemita ; Agarwal, Khushbu ; Wu, Yinghui ; Choudhury, Sutanay ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Continuous monitoring of the spatio-temporal dynamic behavior of critical infrastructure networks, such as the power systems, is a challenging but important task. In particular, accurate and timely prediction of the (electro-mechanical) transient dynamic trajectories of the power grid is necessary for early detection of any instability and prevention of catastrophic failures. Existing approaches for prediction of dynamic trajectories either rely on the availability of accurate physical models of the system, use computationally expensive time-domain simulations, or are applicable only at local prediction problems (e.g., a single generator). In this paper, we report the application of two broad classes of data-driven learning models - along with their algorithmic implementation and performance evaluation - in predicting transient trajectories in power networks using only streaming measurements and the network topology as input. One class of models is based on the Koopman operator theory which allows for capturing the nonlinear dynamic behavior via an infinite-dimensional linear operator. The other class of models is based on the graph convolutional neural networks which are adept at capturing the inherent spatio-temporal correlations within the power network. Transient dynamic datasets for training and testing the models are synthesized by simulating a wide variety of load change events in the IEEE 68-bus system, categorized by the load change magnitudes, as well as by the degree of connectivity and the distance to nearest generator nodes. The results confirm that the proposed predictive models can successfully predict the post-disturbance transient evolution of the system with a high level of accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3160710</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Comparative studies ; Data-driven techniques ; Dynamic stability ; Dynamical systems ; Generators ; graph neural network ; Graph neural networks ; Koopman operator ; Linear operators ; Machine learning ; Network topologies ; Neural networks ; Nonlinear dynamical systems ; Nonlinear dynamics ; Performance evaluation ; Performance prediction ; Power system dynamics ; Power system stability ; POWER TRANSMISSION AND DISTRIBUTION ; Prediction models ; Predictive models ; Trajectory ; Transient analysis ; transient dynamics</subject><ispartof>IEEE access, 2022-01, Vol.10, p.32337-32349</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-7095a119fcf3d8e0aed8d6064a88ed7bf4d391cab0e647c3a786588c005f629f3</citedby><cites>FETCH-LOGICAL-c435t-7095a119fcf3d8e0aed8d6064a88ed7bf4d391cab0e647c3a786588c005f629f3</cites><orcidid>0000-0002-1892-2439 ; 0000-0002-8006-5394 ; 0000-0002-1575-8557 ; 0000000215758557 ; 0000000218922439 ; 0000000280065394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9738598$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,27610,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1859760$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nandanoori, Sai Pushpak</creatorcontrib><creatorcontrib>Guan, Sheng</creatorcontrib><creatorcontrib>Kundu, Soumya</creatorcontrib><creatorcontrib>Pal, Seemita</creatorcontrib><creatorcontrib>Agarwal, Khushbu</creatorcontrib><creatorcontrib>Wu, Yinghui</creatorcontrib><creatorcontrib>Choudhury, Sutanay</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>Continuous monitoring of the spatio-temporal dynamic behavior of critical infrastructure networks, such as the power systems, is a challenging but important task. In particular, accurate and timely prediction of the (electro-mechanical) transient dynamic trajectories of the power grid is necessary for early detection of any instability and prevention of catastrophic failures. Existing approaches for prediction of dynamic trajectories either rely on the availability of accurate physical models of the system, use computationally expensive time-domain simulations, or are applicable only at local prediction problems (e.g., a single generator). In this paper, we report the application of two broad classes of data-driven learning models - along with their algorithmic implementation and performance evaluation - in predicting transient trajectories in power networks using only streaming measurements and the network topology as input. One class of models is based on the Koopman operator theory which allows for capturing the nonlinear dynamic behavior via an infinite-dimensional linear operator. The other class of models is based on the graph convolutional neural networks which are adept at capturing the inherent spatio-temporal correlations within the power network. Transient dynamic datasets for training and testing the models are synthesized by simulating a wide variety of load change events in the IEEE 68-bus system, categorized by the load change magnitudes, as well as by the degree of connectivity and the distance to nearest generator nodes. The results confirm that the proposed predictive models can successfully predict the post-disturbance transient evolution of the system with a high level of accuracy.</description><subject>Artificial neural networks</subject><subject>Comparative studies</subject><subject>Data-driven techniques</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Generators</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>Koopman operator</subject><subject>Linear operators</subject><subject>Machine learning</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Performance evaluation</subject><subject>Performance prediction</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>transient dynamics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFvEzEQhVcIJKq0v6AXC84J9nrX6-UWLW2oCFAp5WzN2uPWIbEX26HKjZ_eDVsqfBlr9N6bGX1FccnogjHaflh23dVmsyhpWS44E7Rh9FVxVjLRznnNxev__m-Li5S2dHxybNXNWfFnFWF4IN_wEGE3lvwY4k8C3pAvIQx78ORrMLhLxIZI1gjRO3__T4eGfDp62DudPpIl6cJ-gAjZ_UayyQdzJMGT2_CIkayiM-Qugk8OfU7kNqJxOrvgz4s3FnYJL57rrPhxfXXXfZ6vv69uuuV6rite53lD2xoYa6223EikgEYaQUUFUqJpelsZ3jINPUVRNZpDI0Utpaa0tqJsLZ8VN1OuCbBVQ3R7iEcVwKm_jRDvFcTs9A5V1ciyr1llK8uqXgJwYxi1DA0TZU_pmPVuygopO5W0y6gfdPAedVZM1m0jTqL3k2iI4dcBU1bbcIh-vFGVoqrLccqIZFbwSaVjSCmifVmNUXXCqya86oRXPeMdXZeTyyHii6Nt-Dhb8ic7dKD0</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Nandanoori, Sai Pushpak</creator><creator>Guan, Sheng</creator><creator>Kundu, Soumya</creator><creator>Pal, Seemita</creator><creator>Agarwal, Khushbu</creator><creator>Wu, Yinghui</creator><creator>Choudhury, Sutanay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1892-2439</orcidid><orcidid>https://orcid.org/0000-0002-8006-5394</orcidid><orcidid>https://orcid.org/0000-0002-1575-8557</orcidid><orcidid>https://orcid.org/0000000215758557</orcidid><orcidid>https://orcid.org/0000000218922439</orcidid><orcidid>https://orcid.org/0000000280065394</orcidid></search><sort><creationdate>20220101</creationdate><title>Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction</title><author>Nandanoori, Sai Pushpak ; Guan, Sheng ; Kundu, Soumya ; Pal, Seemita ; Agarwal, Khushbu ; Wu, Yinghui ; Choudhury, Sutanay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-7095a119fcf3d8e0aed8d6064a88ed7bf4d391cab0e647c3a786588c005f629f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Comparative studies</topic><topic>Data-driven techniques</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Generators</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>Koopman operator</topic><topic>Linear operators</topic><topic>Machine learning</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Performance evaluation</topic><topic>Performance prediction</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>transient dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nandanoori, Sai Pushpak</creatorcontrib><creatorcontrib>Guan, Sheng</creatorcontrib><creatorcontrib>Kundu, Soumya</creatorcontrib><creatorcontrib>Pal, Seemita</creatorcontrib><creatorcontrib>Agarwal, Khushbu</creatorcontrib><creatorcontrib>Wu, Yinghui</creatorcontrib><creatorcontrib>Choudhury, Sutanay</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nandanoori, Sai Pushpak</au><au>Guan, Sheng</au><au>Kundu, Soumya</au><au>Pal, Seemita</au><au>Agarwal, Khushbu</au><au>Wu, Yinghui</au><au>Choudhury, Sutanay</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><spage>32337</spage><epage>32349</epage><pages>32337-32349</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Continuous monitoring of the spatio-temporal dynamic behavior of critical infrastructure networks, such as the power systems, is a challenging but important task. In particular, accurate and timely prediction of the (electro-mechanical) transient dynamic trajectories of the power grid is necessary for early detection of any instability and prevention of catastrophic failures. Existing approaches for prediction of dynamic trajectories either rely on the availability of accurate physical models of the system, use computationally expensive time-domain simulations, or are applicable only at local prediction problems (e.g., a single generator). In this paper, we report the application of two broad classes of data-driven learning models - along with their algorithmic implementation and performance evaluation - in predicting transient trajectories in power networks using only streaming measurements and the network topology as input. One class of models is based on the Koopman operator theory which allows for capturing the nonlinear dynamic behavior via an infinite-dimensional linear operator. The other class of models is based on the graph convolutional neural networks which are adept at capturing the inherent spatio-temporal correlations within the power network. Transient dynamic datasets for training and testing the models are synthesized by simulating a wide variety of load change events in the IEEE 68-bus system, categorized by the load change magnitudes, as well as by the degree of connectivity and the distance to nearest generator nodes. The results confirm that the proposed predictive models can successfully predict the post-disturbance transient evolution of the system with a high level of accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3160710</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1892-2439</orcidid><orcidid>https://orcid.org/0000-0002-8006-5394</orcidid><orcidid>https://orcid.org/0000-0002-1575-8557</orcidid><orcidid>https://orcid.org/0000000215758557</orcidid><orcidid>https://orcid.org/0000000218922439</orcidid><orcidid>https://orcid.org/0000000280065394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022-01, Vol.10, p.32337-32349
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2645247835
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Comparative studies
Data-driven techniques
Dynamic stability
Dynamical systems
Generators
graph neural network
Graph neural networks
Koopman operator
Linear operators
Machine learning
Network topologies
Neural networks
Nonlinear dynamical systems
Nonlinear dynamics
Performance evaluation
Performance prediction
Power system dynamics
Power system stability
POWER TRANSMISSION AND DISTRIBUTION
Prediction models
Predictive models
Trajectory
Transient analysis
transient dynamics
title Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Neural%20Network%20and%20Koopman%20Models%20for%20Learning%20Networked%20Dynamics:%20A%20Comparative%20Study%20on%20Power%20Grid%20Transients%20Prediction&rft.jtitle=IEEE%20access&rft.au=Nandanoori,%20Sai%20Pushpak&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2022-01-01&rft.volume=10&rft.spage=32337&rft.epage=32349&rft.pages=32337-32349&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3160710&rft_dat=%3Cproquest_doaj_%3E2645247835%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645247835&rft_id=info:pmid/&rft_ieee_id=9738598&rft_doaj_id=oai_doaj_org_article_4782b514f4f14b8aa3dd10f1ed162b00&rfr_iscdi=true