Computational Design of Alloys for Energy Technologies
Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US D...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2022-04, Vol.74 (4), p.1376-1378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1378 |
---|---|
container_issue | 4 |
container_start_page | 1376 |
container_title | JOM (1989) |
container_volume | 74 |
creator | Devanathan, Ram Capolungo, Laurent |
description | Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US Department of Energy, Office of Fossil Energy and Carbon Management, launched the eXtremeMAT (XMAT) consortium of seven national laboratories to bring together state-of-the-art microstructure-based computational modeling, data science, and cutting-edge experimental tools across the National Laboratory enterprise, in conjunction with industry partnership, to accelerate development and deployment of new heat-resistant alloys. In "Predictive crystal plasticity modeling of single crystal nickel based on first-principles calculations," the multiple scales that govern mechanical behavior of alloys are linked by Qin et al. using a computational approach in which elastic strains imposed during the calculation of ideal shear strength are combined with a model for the evolution of the overall dislocation network to predict hardening at larger strains in single-crystal Ni. [...]in "Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®," Pagnola, Barcelo and Useche used CFD with the volume of fluid model to study bubble formation for two non-isothermal, immiscible, and compressible fluids. |
doi_str_mv | 10.1007/s11837-022-05208-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645224388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645224388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-39a904b10799af68146f13095181876188dfe5c167e464e78acbf51cefe7083</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5giMRvu9TtjVcpDqsRAd8sNdkiVxsVOh_x7UoLExnTPcL6jq4-QW4R7BNAPGdFwTYExCpKBoXBGZigFp2gkno8ZhKbCcHNJrnLewQiJEmdELeP-cOxd38TOtcWjz03dFTEUi7aNQy5CTMWq86keio2vPrvYxrrx-ZpcBNdmf_N75-T9abVZvtD12_PrcrGmFVe8p7x0JYgtgi5LF5RBoQJyKCUaNFqhMR_BywqV9kIJr42rtkFi5YPXYPic3E2rhxS_jj73dhePafwzW6aEZExwc2qxqVWlmHPywR5Ss3dpsAj2ZMdOduxox_7YsTBCfILyWO5qn_6m_6G-AWKKZeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645224388</pqid></control><display><type>article</type><title>Computational Design of Alloys for Energy Technologies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Devanathan, Ram ; Capolungo, Laurent</creator><creatorcontrib>Devanathan, Ram ; Capolungo, Laurent</creatorcontrib><description>Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US Department of Energy, Office of Fossil Energy and Carbon Management, launched the eXtremeMAT (XMAT) consortium of seven national laboratories to bring together state-of-the-art microstructure-based computational modeling, data science, and cutting-edge experimental tools across the National Laboratory enterprise, in conjunction with industry partnership, to accelerate development and deployment of new heat-resistant alloys. In "Predictive crystal plasticity modeling of single crystal nickel based on first-principles calculations," the multiple scales that govern mechanical behavior of alloys are linked by Qin et al. using a computational approach in which elastic strains imposed during the calculation of ideal shear strength are combined with a model for the evolution of the overall dislocation network to predict hardening at larger strains in single-crystal Ni. [...]in "Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®," Pagnola, Barcelo and Useche used CFD with the volume of fluid model to study bubble formation for two non-isothermal, immiscible, and compressible fluids.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-022-05208-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Chemistry/Food Science ; Clean energy ; Compressible fluids ; Computational Design of Alloys for Energy Technologies ; Consortia ; Datasets ; Earth Sciences ; Energy costs ; Energy industry ; Energy technology ; Engineering ; Environment ; First principles ; Grain size ; Greenhouse gases ; Heat ; Heat resistant alloys ; Industrial development ; Laboratories ; Machine learning ; Mechanical properties ; Melt spinning ; Neural networks ; Oxidation ; Physics ; Precipitation ; Shear strength ; Single crystals ; Solidification ; Temperature</subject><ispartof>JOM (1989), 2022-04, Vol.74 (4), p.1376-1378</ispartof><rights>The Minerals, Metals & Materials Society 2022</rights><rights>Copyright Springer Nature B.V. Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-39a904b10799af68146f13095181876188dfe5c167e464e78acbf51cefe7083</citedby><orcidid>0000-0001-8125-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-022-05208-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-022-05208-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Devanathan, Ram</creatorcontrib><creatorcontrib>Capolungo, Laurent</creatorcontrib><title>Computational Design of Alloys for Energy Technologies</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US Department of Energy, Office of Fossil Energy and Carbon Management, launched the eXtremeMAT (XMAT) consortium of seven national laboratories to bring together state-of-the-art microstructure-based computational modeling, data science, and cutting-edge experimental tools across the National Laboratory enterprise, in conjunction with industry partnership, to accelerate development and deployment of new heat-resistant alloys. In "Predictive crystal plasticity modeling of single crystal nickel based on first-principles calculations," the multiple scales that govern mechanical behavior of alloys are linked by Qin et al. using a computational approach in which elastic strains imposed during the calculation of ideal shear strength are combined with a model for the evolution of the overall dislocation network to predict hardening at larger strains in single-crystal Ni. [...]in "Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®," Pagnola, Barcelo and Useche used CFD with the volume of fluid model to study bubble formation for two non-isothermal, immiscible, and compressible fluids.</description><subject>Alloys</subject><subject>Chemistry/Food Science</subject><subject>Clean energy</subject><subject>Compressible fluids</subject><subject>Computational Design of Alloys for Energy Technologies</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Earth Sciences</subject><subject>Energy costs</subject><subject>Energy industry</subject><subject>Energy technology</subject><subject>Engineering</subject><subject>Environment</subject><subject>First principles</subject><subject>Grain size</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>Heat resistant alloys</subject><subject>Industrial development</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Melt spinning</subject><subject>Neural networks</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Shear strength</subject><subject>Single crystals</subject><subject>Solidification</subject><subject>Temperature</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtPwzAUhS0EEqXwB5giMRvu9TtjVcpDqsRAd8sNdkiVxsVOh_x7UoLExnTPcL6jq4-QW4R7BNAPGdFwTYExCpKBoXBGZigFp2gkno8ZhKbCcHNJrnLewQiJEmdELeP-cOxd38TOtcWjz03dFTEUi7aNQy5CTMWq86keio2vPrvYxrrx-ZpcBNdmf_N75-T9abVZvtD12_PrcrGmFVe8p7x0JYgtgi5LF5RBoQJyKCUaNFqhMR_BywqV9kIJr42rtkFi5YPXYPic3E2rhxS_jj73dhePafwzW6aEZExwc2qxqVWlmHPywR5Ss3dpsAj2ZMdOduxox_7YsTBCfILyWO5qn_6m_6G-AWKKZeU</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Devanathan, Ram</creator><creator>Capolungo, Laurent</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-8125-4237</orcidid></search><sort><creationdate>20220401</creationdate><title>Computational Design of Alloys for Energy Technologies</title><author>Devanathan, Ram ; Capolungo, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-39a904b10799af68146f13095181876188dfe5c167e464e78acbf51cefe7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Chemistry/Food Science</topic><topic>Clean energy</topic><topic>Compressible fluids</topic><topic>Computational Design of Alloys for Energy Technologies</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Earth Sciences</topic><topic>Energy costs</topic><topic>Energy industry</topic><topic>Energy technology</topic><topic>Engineering</topic><topic>Environment</topic><topic>First principles</topic><topic>Grain size</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>Heat resistant alloys</topic><topic>Industrial development</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Melt spinning</topic><topic>Neural networks</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Shear strength</topic><topic>Single crystals</topic><topic>Solidification</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devanathan, Ram</creatorcontrib><creatorcontrib>Capolungo, Laurent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devanathan, Ram</au><au>Capolungo, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Design of Alloys for Energy Technologies</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>74</volume><issue>4</issue><spage>1376</spage><epage>1378</epage><pages>1376-1378</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US Department of Energy, Office of Fossil Energy and Carbon Management, launched the eXtremeMAT (XMAT) consortium of seven national laboratories to bring together state-of-the-art microstructure-based computational modeling, data science, and cutting-edge experimental tools across the National Laboratory enterprise, in conjunction with industry partnership, to accelerate development and deployment of new heat-resistant alloys. In "Predictive crystal plasticity modeling of single crystal nickel based on first-principles calculations," the multiple scales that govern mechanical behavior of alloys are linked by Qin et al. using a computational approach in which elastic strains imposed during the calculation of ideal shear strength are combined with a model for the evolution of the overall dislocation network to predict hardening at larger strains in single-crystal Ni. [...]in "Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®," Pagnola, Barcelo and Useche used CFD with the volume of fluid model to study bubble formation for two non-isothermal, immiscible, and compressible fluids.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-022-05208-0</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-8125-4237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2022-04, Vol.74 (4), p.1376-1378 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2645224388 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Chemistry/Food Science Clean energy Compressible fluids Computational Design of Alloys for Energy Technologies Consortia Datasets Earth Sciences Energy costs Energy industry Energy technology Engineering Environment First principles Grain size Greenhouse gases Heat Heat resistant alloys Industrial development Laboratories Machine learning Mechanical properties Melt spinning Neural networks Oxidation Physics Precipitation Shear strength Single crystals Solidification Temperature |
title | Computational Design of Alloys for Energy Technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Design%20of%20Alloys%20for%20Energy%20Technologies&rft.jtitle=JOM%20(1989)&rft.au=Devanathan,%20Ram&rft.date=2022-04-01&rft.volume=74&rft.issue=4&rft.spage=1376&rft.epage=1378&rft.pages=1376-1378&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-022-05208-0&rft_dat=%3Cproquest_cross%3E2645224388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645224388&rft_id=info:pmid/&rfr_iscdi=true |