Computational Design of Alloys for Energy Technologies

Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2022-04, Vol.74 (4), p.1376-1378
Hauptverfasser: Devanathan, Ram, Capolungo, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 4
container_start_page 1376
container_title JOM (1989)
container_volume 74
creator Devanathan, Ram
Capolungo, Laurent
description Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US Department of Energy, Office of Fossil Energy and Carbon Management, launched the eXtremeMAT (XMAT) consortium of seven national laboratories to bring together state-of-the-art microstructure-based computational modeling, data science, and cutting-edge experimental tools across the National Laboratory enterprise, in conjunction with industry partnership, to accelerate development and deployment of new heat-resistant alloys. In "Predictive crystal plasticity modeling of single crystal nickel based on first-principles calculations," the multiple scales that govern mechanical behavior of alloys are linked by Qin et al. using a computational approach in which elastic strains imposed during the calculation of ideal shear strength are combined with a model for the evolution of the overall dislocation network to predict hardening at larger strains in single-crystal Ni. [...]in "Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®," Pagnola, Barcelo and Useche used CFD with the volume of fluid model to study bubble formation for two non-isothermal, immiscible, and compressible fluids.
doi_str_mv 10.1007/s11837-022-05208-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645224388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645224388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-39a904b10799af68146f13095181876188dfe5c167e464e78acbf51cefe7083</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5giMRvu9TtjVcpDqsRAd8sNdkiVxsVOh_x7UoLExnTPcL6jq4-QW4R7BNAPGdFwTYExCpKBoXBGZigFp2gkno8ZhKbCcHNJrnLewQiJEmdELeP-cOxd38TOtcWjz03dFTEUi7aNQy5CTMWq86keio2vPrvYxrrx-ZpcBNdmf_N75-T9abVZvtD12_PrcrGmFVe8p7x0JYgtgi5LF5RBoQJyKCUaNFqhMR_BywqV9kIJr42rtkFi5YPXYPic3E2rhxS_jj73dhePafwzW6aEZExwc2qxqVWlmHPywR5Ss3dpsAj2ZMdOduxox_7YsTBCfILyWO5qn_6m_6G-AWKKZeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645224388</pqid></control><display><type>article</type><title>Computational Design of Alloys for Energy Technologies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Devanathan, Ram ; Capolungo, Laurent</creator><creatorcontrib>Devanathan, Ram ; Capolungo, Laurent</creatorcontrib><description>Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US Department of Energy, Office of Fossil Energy and Carbon Management, launched the eXtremeMAT (XMAT) consortium of seven national laboratories to bring together state-of-the-art microstructure-based computational modeling, data science, and cutting-edge experimental tools across the National Laboratory enterprise, in conjunction with industry partnership, to accelerate development and deployment of new heat-resistant alloys. In "Predictive crystal plasticity modeling of single crystal nickel based on first-principles calculations," the multiple scales that govern mechanical behavior of alloys are linked by Qin et al. using a computational approach in which elastic strains imposed during the calculation of ideal shear strength are combined with a model for the evolution of the overall dislocation network to predict hardening at larger strains in single-crystal Ni. [...]in "Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®," Pagnola, Barcelo and Useche used CFD with the volume of fluid model to study bubble formation for two non-isothermal, immiscible, and compressible fluids.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-022-05208-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Chemistry/Food Science ; Clean energy ; Compressible fluids ; Computational Design of Alloys for Energy Technologies ; Consortia ; Datasets ; Earth Sciences ; Energy costs ; Energy industry ; Energy technology ; Engineering ; Environment ; First principles ; Grain size ; Greenhouse gases ; Heat ; Heat resistant alloys ; Industrial development ; Laboratories ; Machine learning ; Mechanical properties ; Melt spinning ; Neural networks ; Oxidation ; Physics ; Precipitation ; Shear strength ; Single crystals ; Solidification ; Temperature</subject><ispartof>JOM (1989), 2022-04, Vol.74 (4), p.1376-1378</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022</rights><rights>Copyright Springer Nature B.V. Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-39a904b10799af68146f13095181876188dfe5c167e464e78acbf51cefe7083</citedby><orcidid>0000-0001-8125-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-022-05208-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-022-05208-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Devanathan, Ram</creatorcontrib><creatorcontrib>Capolungo, Laurent</creatorcontrib><title>Computational Design of Alloys for Energy Technologies</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US Department of Energy, Office of Fossil Energy and Carbon Management, launched the eXtremeMAT (XMAT) consortium of seven national laboratories to bring together state-of-the-art microstructure-based computational modeling, data science, and cutting-edge experimental tools across the National Laboratory enterprise, in conjunction with industry partnership, to accelerate development and deployment of new heat-resistant alloys. In "Predictive crystal plasticity modeling of single crystal nickel based on first-principles calculations," the multiple scales that govern mechanical behavior of alloys are linked by Qin et al. using a computational approach in which elastic strains imposed during the calculation of ideal shear strength are combined with a model for the evolution of the overall dislocation network to predict hardening at larger strains in single-crystal Ni. [...]in "Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®," Pagnola, Barcelo and Useche used CFD with the volume of fluid model to study bubble formation for two non-isothermal, immiscible, and compressible fluids.</description><subject>Alloys</subject><subject>Chemistry/Food Science</subject><subject>Clean energy</subject><subject>Compressible fluids</subject><subject>Computational Design of Alloys for Energy Technologies</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Earth Sciences</subject><subject>Energy costs</subject><subject>Energy industry</subject><subject>Energy technology</subject><subject>Engineering</subject><subject>Environment</subject><subject>First principles</subject><subject>Grain size</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>Heat resistant alloys</subject><subject>Industrial development</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Melt spinning</subject><subject>Neural networks</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Shear strength</subject><subject>Single crystals</subject><subject>Solidification</subject><subject>Temperature</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtPwzAUhS0EEqXwB5giMRvu9TtjVcpDqsRAd8sNdkiVxsVOh_x7UoLExnTPcL6jq4-QW4R7BNAPGdFwTYExCpKBoXBGZigFp2gkno8ZhKbCcHNJrnLewQiJEmdELeP-cOxd38TOtcWjz03dFTEUi7aNQy5CTMWq86keio2vPrvYxrrx-ZpcBNdmf_N75-T9abVZvtD12_PrcrGmFVe8p7x0JYgtgi5LF5RBoQJyKCUaNFqhMR_BywqV9kIJr42rtkFi5YPXYPic3E2rhxS_jj73dhePafwzW6aEZExwc2qxqVWlmHPywR5Ss3dpsAj2ZMdOduxox_7YsTBCfILyWO5qn_6m_6G-AWKKZeU</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Devanathan, Ram</creator><creator>Capolungo, Laurent</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-8125-4237</orcidid></search><sort><creationdate>20220401</creationdate><title>Computational Design of Alloys for Energy Technologies</title><author>Devanathan, Ram ; Capolungo, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-39a904b10799af68146f13095181876188dfe5c167e464e78acbf51cefe7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Chemistry/Food Science</topic><topic>Clean energy</topic><topic>Compressible fluids</topic><topic>Computational Design of Alloys for Energy Technologies</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Earth Sciences</topic><topic>Energy costs</topic><topic>Energy industry</topic><topic>Energy technology</topic><topic>Engineering</topic><topic>Environment</topic><topic>First principles</topic><topic>Grain size</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>Heat resistant alloys</topic><topic>Industrial development</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Melt spinning</topic><topic>Neural networks</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Shear strength</topic><topic>Single crystals</topic><topic>Solidification</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devanathan, Ram</creatorcontrib><creatorcontrib>Capolungo, Laurent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devanathan, Ram</au><au>Capolungo, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Design of Alloys for Energy Technologies</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>74</volume><issue>4</issue><spage>1376</spage><epage>1378</epage><pages>1376-1378</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>Considering both the threats of the energy crisis, namely soaring costs of greenhouse gas emission-producing energy and climate change, it is essential to increase the pace of material discovery and enable rapid paths for material qualification to advance clean energy technologies. In 2017, the US Department of Energy, Office of Fossil Energy and Carbon Management, launched the eXtremeMAT (XMAT) consortium of seven national laboratories to bring together state-of-the-art microstructure-based computational modeling, data science, and cutting-edge experimental tools across the National Laboratory enterprise, in conjunction with industry partnership, to accelerate development and deployment of new heat-resistant alloys. In "Predictive crystal plasticity modeling of single crystal nickel based on first-principles calculations," the multiple scales that govern mechanical behavior of alloys are linked by Qin et al. using a computational approach in which elastic strains imposed during the calculation of ideal shear strength are combined with a model for the evolution of the overall dislocation network to predict hardening at larger strains in single-crystal Ni. [...]in "Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®," Pagnola, Barcelo and Useche used CFD with the volume of fluid model to study bubble formation for two non-isothermal, immiscible, and compressible fluids.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-022-05208-0</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-8125-4237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2022-04, Vol.74 (4), p.1376-1378
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2645224388
source SpringerLink Journals - AutoHoldings
subjects Alloys
Chemistry/Food Science
Clean energy
Compressible fluids
Computational Design of Alloys for Energy Technologies
Consortia
Datasets
Earth Sciences
Energy costs
Energy industry
Energy technology
Engineering
Environment
First principles
Grain size
Greenhouse gases
Heat
Heat resistant alloys
Industrial development
Laboratories
Machine learning
Mechanical properties
Melt spinning
Neural networks
Oxidation
Physics
Precipitation
Shear strength
Single crystals
Solidification
Temperature
title Computational Design of Alloys for Energy Technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Design%20of%20Alloys%20for%20Energy%20Technologies&rft.jtitle=JOM%20(1989)&rft.au=Devanathan,%20Ram&rft.date=2022-04-01&rft.volume=74&rft.issue=4&rft.spage=1376&rft.epage=1378&rft.pages=1376-1378&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-022-05208-0&rft_dat=%3Cproquest_cross%3E2645224388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645224388&rft_id=info:pmid/&rfr_iscdi=true