Improving charge transport and reducing non-radiative energy loss via a nonacyclic carbazole-based third component for over 18% efficiency polymer solar cells
Sensible selection of host blends and the third component is crucial to give full play to the advantages of the ternary strategy for achieving high efficiency polymer solar cells (PSCs). In this work, a PM6:BTP-BO-4Cl binary system and non-fullerene acceptor DTTC-4ClC9 with the dithienocyclopentacar...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-03, Vol.10 (13), p.7090-7098 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7098 |
---|---|
container_issue | 13 |
container_start_page | 7090 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Gong, Yongshuai Yu, Runnan Gao, Huaizhi Ma, Zongwen Dong, Yiman Su, Yi-Jia Chen, Tsung-Wei Hsu, Chain-Shu Tan, Zhan'ao |
description | Sensible selection of host blends and the third component is crucial to give full play to the advantages of the ternary strategy for achieving high efficiency polymer solar cells (PSCs). In this work, a PM6:BTP-BO-4Cl binary system and non-fullerene acceptor DTTC-4ClC9 with the dithienocyclopentacarbazole (DTC) core are selected as the host blend and the third component, respectively. DTTC-4ClC9 and BTP-BO-4Cl are found to have excellent miscibility, and the addition of DTTC-4ClC9 into the binary blend can modify the morphology of the film, which brings out an improved charge transport and obviously enhanced exciton dissociation ability. The non-radiative energy loss of the devices is significantly reduced to 0.207 eV when employing the ternary strategy, thus leading to a reduction in energy loss. As a result, the introduction of 15% DTTC-4ClC9 in the PM6:BTP-BO-4Cl system can promote the power conversion efficiency from 17.11% to remarkable 18.21%, meanwhile, the open-circuit voltage, short-circuit current density, and fill factor are increased simultaneously. |
doi_str_mv | 10.1039/D2TA00716A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2645147113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645147113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-ab7871b804bf9980aae1af02dbf73f96911f838aed2d3778a93d2842f48c920a3</originalsourceid><addsrcrecordid>eNpFUcFq3DAQNaGBhCSXfsFA6aXgRpK9tnRckqYJLOSSnM1YGm0UvJI78i64H5NvrZeEZi4zvPeYYd4riq9S_JSiMte36mktRCub9UlxrsRKlG1tmi__Z63PiqucX8VSWojGmPPi7WE3cjqEuAX7grwlmBhjHhNPgNEBk9vbIxtTLBldwCkcCCgSb2cYUs5wCAh45NHOdggWLHKPf9NAZY-ZHEwvgR3YtBtTpDiBTwzpQAxSfwfyPthA0c4wpmHeLXBOAzJYGoZ8WZx6HDJdffSL4vnu19PNfbl5_P1ws96UVq3MVGLf6lb2WtS9N0YLRJLohXK9bytvGiOl15VGcspVbavRVE7pWvlaW6MEVhfFt_e9ixl_9pSn7jXtOS4nO9XUK1m3UlaL6se7yvLyOJPvRg475LmTojtG0H1GUP0Dh8t7eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645147113</pqid></control><display><type>article</type><title>Improving charge transport and reducing non-radiative energy loss via a nonacyclic carbazole-based third component for over 18% efficiency polymer solar cells</title><source>Royal Society Of Chemistry Journals</source><creator>Gong, Yongshuai ; Yu, Runnan ; Gao, Huaizhi ; Ma, Zongwen ; Dong, Yiman ; Su, Yi-Jia ; Chen, Tsung-Wei ; Hsu, Chain-Shu ; Tan, Zhan'ao</creator><creatorcontrib>Gong, Yongshuai ; Yu, Runnan ; Gao, Huaizhi ; Ma, Zongwen ; Dong, Yiman ; Su, Yi-Jia ; Chen, Tsung-Wei ; Hsu, Chain-Shu ; Tan, Zhan'ao</creatorcontrib><description>Sensible selection of host blends and the third component is crucial to give full play to the advantages of the ternary strategy for achieving high efficiency polymer solar cells (PSCs). In this work, a PM6:BTP-BO-4Cl binary system and non-fullerene acceptor DTTC-4ClC9 with the dithienocyclopentacarbazole (DTC) core are selected as the host blend and the third component, respectively. DTTC-4ClC9 and BTP-BO-4Cl are found to have excellent miscibility, and the addition of DTTC-4ClC9 into the binary blend can modify the morphology of the film, which brings out an improved charge transport and obviously enhanced exciton dissociation ability. The non-radiative energy loss of the devices is significantly reduced to 0.207 eV when employing the ternary strategy, thus leading to a reduction in energy loss. As a result, the introduction of 15% DTTC-4ClC9 in the PM6:BTP-BO-4Cl system can promote the power conversion efficiency from 17.11% to remarkable 18.21%, meanwhile, the open-circuit voltage, short-circuit current density, and fill factor are increased simultaneously.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D2TA00716A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbazole ; Carbazoles ; Charge transport ; Circuits ; Efficiency ; Energy ; Energy conversion efficiency ; Energy dissipation ; Energy loss ; Energy of dissociation ; Excitons ; Miscibility ; Open circuit voltage ; Photovoltaic cells ; Polymer blends ; Polymers ; Short circuit currents ; Short-circuit current ; Solar cells</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-03, Vol.10 (13), p.7090-7098</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-ab7871b804bf9980aae1af02dbf73f96911f838aed2d3778a93d2842f48c920a3</citedby><cites>FETCH-LOGICAL-c259t-ab7871b804bf9980aae1af02dbf73f96911f838aed2d3778a93d2842f48c920a3</cites><orcidid>0000-0003-2700-4725 ; 0000-0002-8312-2921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gong, Yongshuai</creatorcontrib><creatorcontrib>Yu, Runnan</creatorcontrib><creatorcontrib>Gao, Huaizhi</creatorcontrib><creatorcontrib>Ma, Zongwen</creatorcontrib><creatorcontrib>Dong, Yiman</creatorcontrib><creatorcontrib>Su, Yi-Jia</creatorcontrib><creatorcontrib>Chen, Tsung-Wei</creatorcontrib><creatorcontrib>Hsu, Chain-Shu</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><title>Improving charge transport and reducing non-radiative energy loss via a nonacyclic carbazole-based third component for over 18% efficiency polymer solar cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Sensible selection of host blends and the third component is crucial to give full play to the advantages of the ternary strategy for achieving high efficiency polymer solar cells (PSCs). In this work, a PM6:BTP-BO-4Cl binary system and non-fullerene acceptor DTTC-4ClC9 with the dithienocyclopentacarbazole (DTC) core are selected as the host blend and the third component, respectively. DTTC-4ClC9 and BTP-BO-4Cl are found to have excellent miscibility, and the addition of DTTC-4ClC9 into the binary blend can modify the morphology of the film, which brings out an improved charge transport and obviously enhanced exciton dissociation ability. The non-radiative energy loss of the devices is significantly reduced to 0.207 eV when employing the ternary strategy, thus leading to a reduction in energy loss. As a result, the introduction of 15% DTTC-4ClC9 in the PM6:BTP-BO-4Cl system can promote the power conversion efficiency from 17.11% to remarkable 18.21%, meanwhile, the open-circuit voltage, short-circuit current density, and fill factor are increased simultaneously.</description><subject>Carbazole</subject><subject>Carbazoles</subject><subject>Charge transport</subject><subject>Circuits</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Energy dissipation</subject><subject>Energy loss</subject><subject>Energy of dissociation</subject><subject>Excitons</subject><subject>Miscibility</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFUcFq3DAQNaGBhCSXfsFA6aXgRpK9tnRckqYJLOSSnM1YGm0UvJI78i64H5NvrZeEZi4zvPeYYd4riq9S_JSiMte36mktRCub9UlxrsRKlG1tmi__Z63PiqucX8VSWojGmPPi7WE3cjqEuAX7grwlmBhjHhNPgNEBk9vbIxtTLBldwCkcCCgSb2cYUs5wCAh45NHOdggWLHKPf9NAZY-ZHEwvgR3YtBtTpDiBTwzpQAxSfwfyPthA0c4wpmHeLXBOAzJYGoZ8WZx6HDJdffSL4vnu19PNfbl5_P1ws96UVq3MVGLf6lb2WtS9N0YLRJLohXK9bytvGiOl15VGcspVbavRVE7pWvlaW6MEVhfFt_e9ixl_9pSn7jXtOS4nO9XUK1m3UlaL6se7yvLyOJPvRg475LmTojtG0H1GUP0Dh8t7eQ</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Gong, Yongshuai</creator><creator>Yu, Runnan</creator><creator>Gao, Huaizhi</creator><creator>Ma, Zongwen</creator><creator>Dong, Yiman</creator><creator>Su, Yi-Jia</creator><creator>Chen, Tsung-Wei</creator><creator>Hsu, Chain-Shu</creator><creator>Tan, Zhan'ao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2700-4725</orcidid><orcidid>https://orcid.org/0000-0002-8312-2921</orcidid></search><sort><creationdate>20220330</creationdate><title>Improving charge transport and reducing non-radiative energy loss via a nonacyclic carbazole-based third component for over 18% efficiency polymer solar cells</title><author>Gong, Yongshuai ; Yu, Runnan ; Gao, Huaizhi ; Ma, Zongwen ; Dong, Yiman ; Su, Yi-Jia ; Chen, Tsung-Wei ; Hsu, Chain-Shu ; Tan, Zhan'ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-ab7871b804bf9980aae1af02dbf73f96911f838aed2d3778a93d2842f48c920a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbazole</topic><topic>Carbazoles</topic><topic>Charge transport</topic><topic>Circuits</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Energy dissipation</topic><topic>Energy loss</topic><topic>Energy of dissociation</topic><topic>Excitons</topic><topic>Miscibility</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Yongshuai</creatorcontrib><creatorcontrib>Yu, Runnan</creatorcontrib><creatorcontrib>Gao, Huaizhi</creatorcontrib><creatorcontrib>Ma, Zongwen</creatorcontrib><creatorcontrib>Dong, Yiman</creatorcontrib><creatorcontrib>Su, Yi-Jia</creatorcontrib><creatorcontrib>Chen, Tsung-Wei</creatorcontrib><creatorcontrib>Hsu, Chain-Shu</creatorcontrib><creatorcontrib>Tan, Zhan'ao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Yongshuai</au><au>Yu, Runnan</au><au>Gao, Huaizhi</au><au>Ma, Zongwen</au><au>Dong, Yiman</au><au>Su, Yi-Jia</au><au>Chen, Tsung-Wei</au><au>Hsu, Chain-Shu</au><au>Tan, Zhan'ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving charge transport and reducing non-radiative energy loss via a nonacyclic carbazole-based third component for over 18% efficiency polymer solar cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-03-30</date><risdate>2022</risdate><volume>10</volume><issue>13</issue><spage>7090</spage><epage>7098</epage><pages>7090-7098</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Sensible selection of host blends and the third component is crucial to give full play to the advantages of the ternary strategy for achieving high efficiency polymer solar cells (PSCs). In this work, a PM6:BTP-BO-4Cl binary system and non-fullerene acceptor DTTC-4ClC9 with the dithienocyclopentacarbazole (DTC) core are selected as the host blend and the third component, respectively. DTTC-4ClC9 and BTP-BO-4Cl are found to have excellent miscibility, and the addition of DTTC-4ClC9 into the binary blend can modify the morphology of the film, which brings out an improved charge transport and obviously enhanced exciton dissociation ability. The non-radiative energy loss of the devices is significantly reduced to 0.207 eV when employing the ternary strategy, thus leading to a reduction in energy loss. As a result, the introduction of 15% DTTC-4ClC9 in the PM6:BTP-BO-4Cl system can promote the power conversion efficiency from 17.11% to remarkable 18.21%, meanwhile, the open-circuit voltage, short-circuit current density, and fill factor are increased simultaneously.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2TA00716A</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2700-4725</orcidid><orcidid>https://orcid.org/0000-0002-8312-2921</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-03, Vol.10 (13), p.7090-7098 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2645147113 |
source | Royal Society Of Chemistry Journals |
subjects | Carbazole Carbazoles Charge transport Circuits Efficiency Energy Energy conversion efficiency Energy dissipation Energy loss Energy of dissociation Excitons Miscibility Open circuit voltage Photovoltaic cells Polymer blends Polymers Short circuit currents Short-circuit current Solar cells |
title | Improving charge transport and reducing non-radiative energy loss via a nonacyclic carbazole-based third component for over 18% efficiency polymer solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20charge%20transport%20and%20reducing%20non-radiative%20energy%20loss%20via%20a%20nonacyclic%20carbazole-based%20third%20component%20for%20over%2018%25%20efficiency%20polymer%20solar%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gong,%20Yongshuai&rft.date=2022-03-30&rft.volume=10&rft.issue=13&rft.spage=7090&rft.epage=7098&rft.pages=7090-7098&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D2TA00716A&rft_dat=%3Cproquest_cross%3E2645147113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645147113&rft_id=info:pmid/&rfr_iscdi=true |