Applicability Boron-Containing Materials Obtained by Self-Propagating High-Temperature Synthesis in Radiation Protection Technology

Research on obtaining heavy-metal borides for the radiation protection of non-extended objects by an energy-efficient method of unconventional powder metallurgy – self-propagating high-temperature synthesis – is presented. The protective properties of two materials based on lanthanum hexaboride and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atomic energy (New York, N.Y.) N.Y.), 2021-11, Vol.131 (1), p.1-5
Hauptverfasser: Dolmatov, O. Yu, Kuznetsov, M. S., Semenov, A. O., Shamanin, I. V., Verkhoturova, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 1
container_start_page 1
container_title Atomic energy (New York, N.Y.)
container_volume 131
creator Dolmatov, O. Yu
Kuznetsov, M. S.
Semenov, A. O.
Shamanin, I. V.
Verkhoturova, V. V.
description Research on obtaining heavy-metal borides for the radiation protection of non-extended objects by an energy-efficient method of unconventional powder metallurgy – self-propagating high-temperature synthesis – is presented. The protective properties of two materials based on lanthanum hexaboride and tungsten boride were synthesized and investigated. Mechanical activation of the charge was used as a method of controlling self-propagating high-temperature synthesis at the sample preparation stage in order to obtain systems with the specified optimal phase composition. The lanthanum hexaboride and tungsten boride samples obtained with weight content 90 and 85%, respectively, in the course of the experiments were investigated as materials providing shielding against a high-energy neutron flux from a plutonium-beryllium source. It was found on the basis of the experiments that the nuclear-physical properties as well as the mass and size parameters of the obtained materials are suitable for effective protection of non-extended objects from a fast-neutron flux.
doi_str_mv 10.1007/s10512-022-00827-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2644596575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A700169500</galeid><sourcerecordid>A700169500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-40e68fabb65d90fef0fc75778a8621206347ea4099944d0b528159e1ac7a28923</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhk1poWmaF-jJ0FMPSkeyZVnH7dI2gYSE7OYsZHvsVfBKrqSF9bkvXm1cCLkEITQM36eR-LPsC4VLCiC-BwqcMgIsbaiZIMd32RnloiA1A_4-1VAVpGS8_ph9CuEJAGQl67Ps72qaRtPqxowmzvkP550la2ejNtbYIb_VEb3RY8jvmlMPu7yZ8w2OPbn3btKDjifsygw7ssX9hF7Hg8d8M9u4w2BCbmz-oDuTOGfz5ERsn8sttjvrRjfMn7MPfZqAF__P8-zx18_t-orc3P2-Xq9uSFtIFkkJWNW9bpqKdxJ67KFvBRei1nXFKEsfLAXqEqSUZdlBw1lNuUSqW6FZLVlxnn1d7p28-3PAENWTO3ibRipWlSWXFRc8UZcLNegRlbG9i163aXW4N62z2JvUXwkAWkkOkIRvr4TERDzGQR9CUNebh9csW9jWuxA89mryZq_9rCioU5JqSVKlJNVzkuqYpGKRQoLtgP7l3W9Y_wAsP6IW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644596575</pqid></control><display><type>article</type><title>Applicability Boron-Containing Materials Obtained by Self-Propagating High-Temperature Synthesis in Radiation Protection Technology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dolmatov, O. Yu ; Kuznetsov, M. S. ; Semenov, A. O. ; Shamanin, I. V. ; Verkhoturova, V. V.</creator><creatorcontrib>Dolmatov, O. Yu ; Kuznetsov, M. S. ; Semenov, A. O. ; Shamanin, I. V. ; Verkhoturova, V. V.</creatorcontrib><description>Research on obtaining heavy-metal borides for the radiation protection of non-extended objects by an energy-efficient method of unconventional powder metallurgy – self-propagating high-temperature synthesis – is presented. The protective properties of two materials based on lanthanum hexaboride and tungsten boride were synthesized and investigated. Mechanical activation of the charge was used as a method of controlling self-propagating high-temperature synthesis at the sample preparation stage in order to obtain systems with the specified optimal phase composition. The lanthanum hexaboride and tungsten boride samples obtained with weight content 90 and 85%, respectively, in the course of the experiments were investigated as materials providing shielding against a high-energy neutron flux from a plutonium-beryllium source. It was found on the basis of the experiments that the nuclear-physical properties as well as the mass and size parameters of the obtained materials are suitable for effective protection of non-extended objects from a fast-neutron flux.</description><identifier>ISSN: 1063-4258</identifier><identifier>EISSN: 1573-8205</identifier><identifier>DOI: 10.1007/s10512-022-00827-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Beryllium ; Borides ; Boron ; Control methods ; Energy efficiency ; Energy industry ; Hadrons ; Heavy Ions ; Heavy metals ; High temperature ; Lanthanum ; Metallurgy ; Neutron flux ; Nuclear Chemistry ; Nuclear Energy ; Nuclear Physics ; Nuclear power plants ; Phase composition ; Physical properties ; Physics ; Physics and Astronomy ; Plutonium ; Powder metallurgy ; Radiation ; Radiation protection ; Radiation shielding ; Sample preparation ; Self propagating high temperature synthesis ; Tungsten ; Tungsten compounds</subject><ispartof>Atomic energy (New York, N.Y.), 2021-11, Vol.131 (1), p.1-5</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-40e68fabb65d90fef0fc75778a8621206347ea4099944d0b528159e1ac7a28923</citedby><cites>FETCH-LOGICAL-c392t-40e68fabb65d90fef0fc75778a8621206347ea4099944d0b528159e1ac7a28923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10512-022-00827-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10512-022-00827-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dolmatov, O. Yu</creatorcontrib><creatorcontrib>Kuznetsov, M. S.</creatorcontrib><creatorcontrib>Semenov, A. O.</creatorcontrib><creatorcontrib>Shamanin, I. V.</creatorcontrib><creatorcontrib>Verkhoturova, V. V.</creatorcontrib><title>Applicability Boron-Containing Materials Obtained by Self-Propagating High-Temperature Synthesis in Radiation Protection Technology</title><title>Atomic energy (New York, N.Y.)</title><addtitle>At Energy</addtitle><description>Research on obtaining heavy-metal borides for the radiation protection of non-extended objects by an energy-efficient method of unconventional powder metallurgy – self-propagating high-temperature synthesis – is presented. The protective properties of two materials based on lanthanum hexaboride and tungsten boride were synthesized and investigated. Mechanical activation of the charge was used as a method of controlling self-propagating high-temperature synthesis at the sample preparation stage in order to obtain systems with the specified optimal phase composition. The lanthanum hexaboride and tungsten boride samples obtained with weight content 90 and 85%, respectively, in the course of the experiments were investigated as materials providing shielding against a high-energy neutron flux from a plutonium-beryllium source. It was found on the basis of the experiments that the nuclear-physical properties as well as the mass and size parameters of the obtained materials are suitable for effective protection of non-extended objects from a fast-neutron flux.</description><subject>Beryllium</subject><subject>Borides</subject><subject>Boron</subject><subject>Control methods</subject><subject>Energy efficiency</subject><subject>Energy industry</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Heavy metals</subject><subject>High temperature</subject><subject>Lanthanum</subject><subject>Metallurgy</subject><subject>Neutron flux</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Nuclear power plants</subject><subject>Phase composition</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plutonium</subject><subject>Powder metallurgy</subject><subject>Radiation</subject><subject>Radiation protection</subject><subject>Radiation shielding</subject><subject>Sample preparation</subject><subject>Self propagating high temperature synthesis</subject><subject>Tungsten</subject><subject>Tungsten compounds</subject><issn>1063-4258</issn><issn>1573-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFq3DAQhk1poWmaF-jJ0FMPSkeyZVnH7dI2gYSE7OYsZHvsVfBKrqSF9bkvXm1cCLkEITQM36eR-LPsC4VLCiC-BwqcMgIsbaiZIMd32RnloiA1A_4-1VAVpGS8_ph9CuEJAGQl67Ps72qaRtPqxowmzvkP550la2ejNtbYIb_VEb3RY8jvmlMPu7yZ8w2OPbn3btKDjifsygw7ssX9hF7Hg8d8M9u4w2BCbmz-oDuTOGfz5ERsn8sttjvrRjfMn7MPfZqAF__P8-zx18_t-orc3P2-Xq9uSFtIFkkJWNW9bpqKdxJ67KFvBRei1nXFKEsfLAXqEqSUZdlBw1lNuUSqW6FZLVlxnn1d7p28-3PAENWTO3ibRipWlSWXFRc8UZcLNegRlbG9i163aXW4N62z2JvUXwkAWkkOkIRvr4TERDzGQR9CUNebh9csW9jWuxA89mryZq_9rCioU5JqSVKlJNVzkuqYpGKRQoLtgP7l3W9Y_wAsP6IW</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Dolmatov, O. Yu</creator><creator>Kuznetsov, M. S.</creator><creator>Semenov, A. O.</creator><creator>Shamanin, I. V.</creator><creator>Verkhoturova, V. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20211101</creationdate><title>Applicability Boron-Containing Materials Obtained by Self-Propagating High-Temperature Synthesis in Radiation Protection Technology</title><author>Dolmatov, O. Yu ; Kuznetsov, M. S. ; Semenov, A. O. ; Shamanin, I. V. ; Verkhoturova, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-40e68fabb65d90fef0fc75778a8621206347ea4099944d0b528159e1ac7a28923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beryllium</topic><topic>Borides</topic><topic>Boron</topic><topic>Control methods</topic><topic>Energy efficiency</topic><topic>Energy industry</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Heavy metals</topic><topic>High temperature</topic><topic>Lanthanum</topic><topic>Metallurgy</topic><topic>Neutron flux</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Nuclear power plants</topic><topic>Phase composition</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plutonium</topic><topic>Powder metallurgy</topic><topic>Radiation</topic><topic>Radiation protection</topic><topic>Radiation shielding</topic><topic>Sample preparation</topic><topic>Self propagating high temperature synthesis</topic><topic>Tungsten</topic><topic>Tungsten compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolmatov, O. Yu</creatorcontrib><creatorcontrib>Kuznetsov, M. S.</creatorcontrib><creatorcontrib>Semenov, A. O.</creatorcontrib><creatorcontrib>Shamanin, I. V.</creatorcontrib><creatorcontrib>Verkhoturova, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Atomic energy (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolmatov, O. Yu</au><au>Kuznetsov, M. S.</au><au>Semenov, A. O.</au><au>Shamanin, I. V.</au><au>Verkhoturova, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applicability Boron-Containing Materials Obtained by Self-Propagating High-Temperature Synthesis in Radiation Protection Technology</atitle><jtitle>Atomic energy (New York, N.Y.)</jtitle><stitle>At Energy</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>131</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1063-4258</issn><eissn>1573-8205</eissn><abstract>Research on obtaining heavy-metal borides for the radiation protection of non-extended objects by an energy-efficient method of unconventional powder metallurgy – self-propagating high-temperature synthesis – is presented. The protective properties of two materials based on lanthanum hexaboride and tungsten boride were synthesized and investigated. Mechanical activation of the charge was used as a method of controlling self-propagating high-temperature synthesis at the sample preparation stage in order to obtain systems with the specified optimal phase composition. The lanthanum hexaboride and tungsten boride samples obtained with weight content 90 and 85%, respectively, in the course of the experiments were investigated as materials providing shielding against a high-energy neutron flux from a plutonium-beryllium source. It was found on the basis of the experiments that the nuclear-physical properties as well as the mass and size parameters of the obtained materials are suitable for effective protection of non-extended objects from a fast-neutron flux.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10512-022-00827-x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4258
ispartof Atomic energy (New York, N.Y.), 2021-11, Vol.131 (1), p.1-5
issn 1063-4258
1573-8205
language eng
recordid cdi_proquest_journals_2644596575
source SpringerLink Journals - AutoHoldings
subjects Beryllium
Borides
Boron
Control methods
Energy efficiency
Energy industry
Hadrons
Heavy Ions
Heavy metals
High temperature
Lanthanum
Metallurgy
Neutron flux
Nuclear Chemistry
Nuclear Energy
Nuclear Physics
Nuclear power plants
Phase composition
Physical properties
Physics
Physics and Astronomy
Plutonium
Powder metallurgy
Radiation
Radiation protection
Radiation shielding
Sample preparation
Self propagating high temperature synthesis
Tungsten
Tungsten compounds
title Applicability Boron-Containing Materials Obtained by Self-Propagating High-Temperature Synthesis in Radiation Protection Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applicability%20Boron-Containing%20Materials%20Obtained%20by%20Self-Propagating%20High-Temperature%20Synthesis%20in%20Radiation%20Protection%20Technology&rft.jtitle=Atomic%20energy%20(New%20York,%20N.Y.)&rft.au=Dolmatov,%20O.%20Yu&rft.date=2021-11-01&rft.volume=131&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1063-4258&rft.eissn=1573-8205&rft_id=info:doi/10.1007/s10512-022-00827-x&rft_dat=%3Cgale_proqu%3EA700169500%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644596575&rft_id=info:pmid/&rft_galeid=A700169500&rfr_iscdi=true