Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data
We examine whether corporate bankruptcy predictions can be improved by utilizing the recurrent neural network (RNN) and long short-term memory (LSTM) algorithms, which can process sequential data. Employing the RNN and LSTM methodologies improves bankruptcy prediction performance relative to using o...
Gespeichert in:
Veröffentlicht in: | Computational economics 2022-03, Vol.59 (3), p.1231-1249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1249 |
---|---|
container_issue | 3 |
container_start_page | 1231 |
container_title | Computational economics |
container_volume | 59 |
creator | Kim, Hyeongjun Cho, Hoon Ryu, Doojin |
description | We examine whether corporate bankruptcy predictions can be improved by utilizing the recurrent neural network (RNN) and long short-term memory (LSTM) algorithms, which can process sequential data. Employing the RNN and LSTM methodologies improves bankruptcy prediction performance relative to using other classification techniques, such as logistic regression, support vector machine, and random forest methods. Because performance indicators, such as sensitivity and specificity, differ depending on the methodology, selecting a model that suits the purpose of the bankruptcy predictions is necessary. Our ensemble model, a synthesis of all methodologies, exhibits the best forecasting performance. In the test sample for the ensemble model, none of the observations with a default probability of less than 10% defaults within one year. |
doi_str_mv | 10.1007/s10614-021-10126-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2644596223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644596223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3a434ea64a874983ebb9d409d99d685821a6feffb470834ffe76824458b2c9253</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhYnRxFr9A55IPKPAsrActVo1qdFEeybsLttSK1RgY_rvpV2T3jxNMvO99yYPgEuCrwnG4iYSzAlDmBJEMKEclUdgREpBkZSCHYMRllQggaU8BWcxrjDGJaF0BNqJDxsfdDLwTrvP0G9Ss4VvwbS2SdY7OI_WLeCLbpbWGTgzOrj9wqSlb_3aL6yJ8MemJdRw6ps-wix6N9-9ccnqNbzXSZ-Dk06vo7n4m2Mwnz58TJ7Q7PXxeXI7Qw3DMqFCs4IZzZmuBJNVYepatvnSStnyqqwo0bwzXVczgauCdZ0RvKKMlVVNG0nLYgyuBt9N8PmBmNTK98HlSEV55iSntMgUHagm-BiD6dQm2C8dtopgtWtTDW2q3Kbat6l21nAQmcY7Gw8SIQXHRAiekWJAYj66hQmH9H-MfwGkTYH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644596223</pqid></control><display><type>article</type><title>Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data</title><source>Springer Nature - Complete Springer Journals</source><creator>Kim, Hyeongjun ; Cho, Hoon ; Ryu, Doojin</creator><creatorcontrib>Kim, Hyeongjun ; Cho, Hoon ; Ryu, Doojin</creatorcontrib><description>We examine whether corporate bankruptcy predictions can be improved by utilizing the recurrent neural network (RNN) and long short-term memory (LSTM) algorithms, which can process sequential data. Employing the RNN and LSTM methodologies improves bankruptcy prediction performance relative to using other classification techniques, such as logistic regression, support vector machine, and random forest methods. Because performance indicators, such as sensitivity and specificity, differ depending on the methodology, selecting a model that suits the purpose of the bankruptcy predictions is necessary. Our ensemble model, a synthesis of all methodologies, exhibits the best forecasting performance. In the test sample for the ensemble model, none of the observations with a default probability of less than 10% defaults within one year.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-021-10126-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bankruptcy ; Behavioral/Experimental Economics ; Classification ; Computer Appl. in Social and Behavioral Sciences ; Credit risk ; Discriminant analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Machine learning ; Macroeconomics ; Math Applications in Computer Science ; Methods ; Neural networks ; Neurons ; Operations Research/Decision Theory ; Performance indicators ; Recurrent ; Recurrent neural networks ; Research methodology ; Short term memory ; Statistical analysis ; Support vector machines ; Variables</subject><ispartof>Computational economics, 2022-03, Vol.59 (3), p.1231-1249</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3a434ea64a874983ebb9d409d99d685821a6feffb470834ffe76824458b2c9253</citedby><cites>FETCH-LOGICAL-c409t-3a434ea64a874983ebb9d409d99d685821a6feffb470834ffe76824458b2c9253</cites><orcidid>0000-0003-2322-320X ; 0000-0002-0059-4887 ; 0000-0003-0386-005X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-021-10126-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-021-10126-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kim, Hyeongjun</creatorcontrib><creatorcontrib>Cho, Hoon</creatorcontrib><creatorcontrib>Ryu, Doojin</creatorcontrib><title>Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>We examine whether corporate bankruptcy predictions can be improved by utilizing the recurrent neural network (RNN) and long short-term memory (LSTM) algorithms, which can process sequential data. Employing the RNN and LSTM methodologies improves bankruptcy prediction performance relative to using other classification techniques, such as logistic regression, support vector machine, and random forest methods. Because performance indicators, such as sensitivity and specificity, differ depending on the methodology, selecting a model that suits the purpose of the bankruptcy predictions is necessary. Our ensemble model, a synthesis of all methodologies, exhibits the best forecasting performance. In the test sample for the ensemble model, none of the observations with a default probability of less than 10% defaults within one year.</description><subject>Algorithms</subject><subject>Bankruptcy</subject><subject>Behavioral/Experimental Economics</subject><subject>Classification</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Credit risk</subject><subject>Discriminant analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Machine learning</subject><subject>Macroeconomics</subject><subject>Math Applications in Computer Science</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Operations Research/Decision Theory</subject><subject>Performance indicators</subject><subject>Recurrent</subject><subject>Recurrent neural networks</subject><subject>Research methodology</subject><subject>Short term memory</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Variables</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPAyEQhYnRxFr9A55IPKPAsrActVo1qdFEeybsLttSK1RgY_rvpV2T3jxNMvO99yYPgEuCrwnG4iYSzAlDmBJEMKEclUdgREpBkZSCHYMRllQggaU8BWcxrjDGJaF0BNqJDxsfdDLwTrvP0G9Ss4VvwbS2SdY7OI_WLeCLbpbWGTgzOrj9wqSlb_3aL6yJ8MemJdRw6ps-wix6N9-9ccnqNbzXSZ-Dk06vo7n4m2Mwnz58TJ7Q7PXxeXI7Qw3DMqFCs4IZzZmuBJNVYepatvnSStnyqqwo0bwzXVczgauCdZ0RvKKMlVVNG0nLYgyuBt9N8PmBmNTK98HlSEV55iSntMgUHagm-BiD6dQm2C8dtopgtWtTDW2q3Kbat6l21nAQmcY7Gw8SIQXHRAiekWJAYj66hQmH9H-MfwGkTYH8</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kim, Hyeongjun</creator><creator>Cho, Hoon</creator><creator>Ryu, Doojin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2322-320X</orcidid><orcidid>https://orcid.org/0000-0002-0059-4887</orcidid><orcidid>https://orcid.org/0000-0003-0386-005X</orcidid></search><sort><creationdate>20220301</creationdate><title>Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data</title><author>Kim, Hyeongjun ; Cho, Hoon ; Ryu, Doojin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3a434ea64a874983ebb9d409d99d685821a6feffb470834ffe76824458b2c9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bankruptcy</topic><topic>Behavioral/Experimental Economics</topic><topic>Classification</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Credit risk</topic><topic>Discriminant analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Machine learning</topic><topic>Macroeconomics</topic><topic>Math Applications in Computer Science</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Operations Research/Decision Theory</topic><topic>Performance indicators</topic><topic>Recurrent</topic><topic>Recurrent neural networks</topic><topic>Research methodology</topic><topic>Short term memory</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyeongjun</creatorcontrib><creatorcontrib>Cho, Hoon</creatorcontrib><creatorcontrib>Ryu, Doojin</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyeongjun</au><au>Cho, Hoon</au><au>Ryu, Doojin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>59</volume><issue>3</issue><spage>1231</spage><epage>1249</epage><pages>1231-1249</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>We examine whether corporate bankruptcy predictions can be improved by utilizing the recurrent neural network (RNN) and long short-term memory (LSTM) algorithms, which can process sequential data. Employing the RNN and LSTM methodologies improves bankruptcy prediction performance relative to using other classification techniques, such as logistic regression, support vector machine, and random forest methods. Because performance indicators, such as sensitivity and specificity, differ depending on the methodology, selecting a model that suits the purpose of the bankruptcy predictions is necessary. Our ensemble model, a synthesis of all methodologies, exhibits the best forecasting performance. In the test sample for the ensemble model, none of the observations with a default probability of less than 10% defaults within one year.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-021-10126-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2322-320X</orcidid><orcidid>https://orcid.org/0000-0002-0059-4887</orcidid><orcidid>https://orcid.org/0000-0003-0386-005X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2022-03, Vol.59 (3), p.1231-1249 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_2644596223 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Bankruptcy Behavioral/Experimental Economics Classification Computer Appl. in Social and Behavioral Sciences Credit risk Discriminant analysis Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Machine learning Macroeconomics Math Applications in Computer Science Methods Neural networks Neurons Operations Research/Decision Theory Performance indicators Recurrent Recurrent neural networks Research methodology Short term memory Statistical analysis Support vector machines Variables |
title | Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corporate%20Bankruptcy%20Prediction%20Using%20Machine%20Learning%20Methodologies%20with%20a%20Focus%20on%20Sequential%20Data&rft.jtitle=Computational%20economics&rft.au=Kim,%20Hyeongjun&rft.date=2022-03-01&rft.volume=59&rft.issue=3&rft.spage=1231&rft.epage=1249&rft.pages=1231-1249&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-021-10126-5&rft_dat=%3Cproquest_cross%3E2644596223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644596223&rft_id=info:pmid/&rfr_iscdi=true |