The Dynamic Volatility Connectedness Structure of Energy Futures and Global Financial Markets: Evidence From a Novel Time–Frequency Domain Approach
We consider directional volatility connectedness among energy markets and financial markets over time and frequencies simultaneously during the period 2007–2018. We utilize and expand Barunik and Krehlik (J Financ Econom 16:271-296, 2018) connectedness measurements using HVAR in order to achieve a b...
Gespeichert in:
Veröffentlicht in: | Computational economics 2022-03, Vol.59 (3), p.1087-1111 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1111 |
---|---|
container_issue | 3 |
container_start_page | 1087 |
container_title | Computational economics |
container_volume | 59 |
creator | Bagheri, Ehsan Ebrahimi, Seyed Babak Mohammadi, Arman Miri, Mahsa Bekiros, Stelios |
description | We consider directional volatility connectedness among energy markets and financial markets over time and frequencies simultaneously during the period 2007–2018. We utilize and expand Barunik and Krehlik (J Financ Econom 16:271-296, 2018) connectedness measurements using HVAR in order to achieve a better perspective of energy markets. Our results indicate that during a crisis, the connectedness among markets increases dramatically. Furthermore, our findings support that markets are mostly driven by short-term factors and are highly speculative. Among energy markets, Natural Gas Futures contribute the least to other markets in all time frames. Besides, London Gas Oil Futures and Heating Oil Futures collaborate. Currencies and Natural Gas Futures are suitable choices for portfolio managers to hedge their risks especially in the long run. The findings of this article can offer new insights to policymakers about the mechanism of connectedness among different markets and international investors. |
doi_str_mv | 10.1007/s10614-021-10120-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2644596157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644596157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-6ed6e10006aa9e2c516a5a2e8c827e27102d1d6ca875894fb8cd4386f1fe0ac73</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EEkvhBTiNxDlgex075lZtNwWpwIGFq-U6k9YlsRc7qZob74B4QZ4ElyD1xskjz__Pb39DyEtGXzNK1ZvMqGSiopxVjDJOq7tHZMNqxSutlXhMNlRzVSmq9VPyLOcbSmnNON-QX4drhLMl2NE7-BoHO_nBTwvsYgjoJuwC5gyfpzS7aU4IsYd9wHS1QDvfX2SwoYPzIV7aAVofbHC-VB9s-oZTfgv7W99hcAhtiiNY-BhvcYCDH_H3j59twu9z6S5wFkfrA5wejylad_2cPOntkPHFv_OEfGn3h9276uLT-fvd6UXlBNVTJbGTWP5PpbUauauZtLXl2LiGK-SKUd6xTjrbqLrRor9sXCe2jexZj9Q6tT0hr9a5Jba8JE_mJs4plEjDpRC1loVhUfFV5VLMOWFvjsmPNi2GUXOP36z4TcFv_uI3d8UEqwldDD4_WFRZiGJciCLZrpJcmuEK00P6fwb_AXa-ldo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644596157</pqid></control><display><type>article</type><title>The Dynamic Volatility Connectedness Structure of Energy Futures and Global Financial Markets: Evidence From a Novel Time–Frequency Domain Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bagheri, Ehsan ; Ebrahimi, Seyed Babak ; Mohammadi, Arman ; Miri, Mahsa ; Bekiros, Stelios</creator><creatorcontrib>Bagheri, Ehsan ; Ebrahimi, Seyed Babak ; Mohammadi, Arman ; Miri, Mahsa ; Bekiros, Stelios</creatorcontrib><description>We consider directional volatility connectedness among energy markets and financial markets over time and frequencies simultaneously during the period 2007–2018. We utilize and expand Barunik and Krehlik (J Financ Econom 16:271-296, 2018) connectedness measurements using HVAR in order to achieve a better perspective of energy markets. Our results indicate that during a crisis, the connectedness among markets increases dramatically. Furthermore, our findings support that markets are mostly driven by short-term factors and are highly speculative. Among energy markets, Natural Gas Futures contribute the least to other markets in all time frames. Besides, London Gas Oil Futures and Heating Oil Futures collaborate. Currencies and Natural Gas Futures are suitable choices for portfolio managers to hedge their risks especially in the long run. The findings of this article can offer new insights to policymakers about the mechanism of connectedness among different markets and international investors.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-021-10120-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral/Experimental Economics ; Computer Appl. in Social and Behavioral Sciences ; Connectedness ; Currencies ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Energy industry ; Futures ; Gas oil ; Heating ; Markets ; Math Applications in Computer Science ; Natural gas ; Operations Research/Decision Theory ; Petroleum ; Policy making ; Securities markets ; Volatility</subject><ispartof>Computational economics, 2022-03, Vol.59 (3), p.1087-1111</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-6ed6e10006aa9e2c516a5a2e8c827e27102d1d6ca875894fb8cd4386f1fe0ac73</citedby><cites>FETCH-LOGICAL-c409t-6ed6e10006aa9e2c516a5a2e8c827e27102d1d6ca875894fb8cd4386f1fe0ac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-021-10120-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-021-10120-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bagheri, Ehsan</creatorcontrib><creatorcontrib>Ebrahimi, Seyed Babak</creatorcontrib><creatorcontrib>Mohammadi, Arman</creatorcontrib><creatorcontrib>Miri, Mahsa</creatorcontrib><creatorcontrib>Bekiros, Stelios</creatorcontrib><title>The Dynamic Volatility Connectedness Structure of Energy Futures and Global Financial Markets: Evidence From a Novel Time–Frequency Domain Approach</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>We consider directional volatility connectedness among energy markets and financial markets over time and frequencies simultaneously during the period 2007–2018. We utilize and expand Barunik and Krehlik (J Financ Econom 16:271-296, 2018) connectedness measurements using HVAR in order to achieve a better perspective of energy markets. Our results indicate that during a crisis, the connectedness among markets increases dramatically. Furthermore, our findings support that markets are mostly driven by short-term factors and are highly speculative. Among energy markets, Natural Gas Futures contribute the least to other markets in all time frames. Besides, London Gas Oil Futures and Heating Oil Futures collaborate. Currencies and Natural Gas Futures are suitable choices for portfolio managers to hedge their risks especially in the long run. The findings of this article can offer new insights to policymakers about the mechanism of connectedness among different markets and international investors.</description><subject>Behavioral/Experimental Economics</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Connectedness</subject><subject>Currencies</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Energy industry</subject><subject>Futures</subject><subject>Gas oil</subject><subject>Heating</subject><subject>Markets</subject><subject>Math Applications in Computer Science</subject><subject>Natural gas</subject><subject>Operations Research/Decision Theory</subject><subject>Petroleum</subject><subject>Policy making</subject><subject>Securities markets</subject><subject>Volatility</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhi0EEkvhBTiNxDlgex075lZtNwWpwIGFq-U6k9YlsRc7qZob74B4QZ4ElyD1xskjz__Pb39DyEtGXzNK1ZvMqGSiopxVjDJOq7tHZMNqxSutlXhMNlRzVSmq9VPyLOcbSmnNON-QX4drhLMl2NE7-BoHO_nBTwvsYgjoJuwC5gyfpzS7aU4IsYd9wHS1QDvfX2SwoYPzIV7aAVofbHC-VB9s-oZTfgv7W99hcAhtiiNY-BhvcYCDH_H3j59twu9z6S5wFkfrA5wejylad_2cPOntkPHFv_OEfGn3h9276uLT-fvd6UXlBNVTJbGTWP5PpbUauauZtLXl2LiGK-SKUd6xTjrbqLrRor9sXCe2jexZj9Q6tT0hr9a5Jba8JE_mJs4plEjDpRC1loVhUfFV5VLMOWFvjsmPNi2GUXOP36z4TcFv_uI3d8UEqwldDD4_WFRZiGJciCLZrpJcmuEK00P6fwb_AXa-ldo</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Bagheri, Ehsan</creator><creator>Ebrahimi, Seyed Babak</creator><creator>Mohammadi, Arman</creator><creator>Miri, Mahsa</creator><creator>Bekiros, Stelios</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20220301</creationdate><title>The Dynamic Volatility Connectedness Structure of Energy Futures and Global Financial Markets: Evidence From a Novel Time–Frequency Domain Approach</title><author>Bagheri, Ehsan ; Ebrahimi, Seyed Babak ; Mohammadi, Arman ; Miri, Mahsa ; Bekiros, Stelios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-6ed6e10006aa9e2c516a5a2e8c827e27102d1d6ca875894fb8cd4386f1fe0ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral/Experimental Economics</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Connectedness</topic><topic>Currencies</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Energy industry</topic><topic>Futures</topic><topic>Gas oil</topic><topic>Heating</topic><topic>Markets</topic><topic>Math Applications in Computer Science</topic><topic>Natural gas</topic><topic>Operations Research/Decision Theory</topic><topic>Petroleum</topic><topic>Policy making</topic><topic>Securities markets</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheri, Ehsan</creatorcontrib><creatorcontrib>Ebrahimi, Seyed Babak</creatorcontrib><creatorcontrib>Mohammadi, Arman</creatorcontrib><creatorcontrib>Miri, Mahsa</creatorcontrib><creatorcontrib>Bekiros, Stelios</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri, Ehsan</au><au>Ebrahimi, Seyed Babak</au><au>Mohammadi, Arman</au><au>Miri, Mahsa</au><au>Bekiros, Stelios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dynamic Volatility Connectedness Structure of Energy Futures and Global Financial Markets: Evidence From a Novel Time–Frequency Domain Approach</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>59</volume><issue>3</issue><spage>1087</spage><epage>1111</epage><pages>1087-1111</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>We consider directional volatility connectedness among energy markets and financial markets over time and frequencies simultaneously during the period 2007–2018. We utilize and expand Barunik and Krehlik (J Financ Econom 16:271-296, 2018) connectedness measurements using HVAR in order to achieve a better perspective of energy markets. Our results indicate that during a crisis, the connectedness among markets increases dramatically. Furthermore, our findings support that markets are mostly driven by short-term factors and are highly speculative. Among energy markets, Natural Gas Futures contribute the least to other markets in all time frames. Besides, London Gas Oil Futures and Heating Oil Futures collaborate. Currencies and Natural Gas Futures are suitable choices for portfolio managers to hedge their risks especially in the long run. The findings of this article can offer new insights to policymakers about the mechanism of connectedness among different markets and international investors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-021-10120-x</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2022-03, Vol.59 (3), p.1087-1111 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_2644596157 |
source | SpringerLink Journals - AutoHoldings |
subjects | Behavioral/Experimental Economics Computer Appl. in Social and Behavioral Sciences Connectedness Currencies Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Energy industry Futures Gas oil Heating Markets Math Applications in Computer Science Natural gas Operations Research/Decision Theory Petroleum Policy making Securities markets Volatility |
title | The Dynamic Volatility Connectedness Structure of Energy Futures and Global Financial Markets: Evidence From a Novel Time–Frequency Domain Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dynamic%20Volatility%20Connectedness%20Structure%20of%20Energy%20Futures%20and%20Global%20Financial%20Markets:%20Evidence%20From%20a%20Novel%20Time%E2%80%93Frequency%20Domain%20Approach&rft.jtitle=Computational%20economics&rft.au=Bagheri,%20Ehsan&rft.date=2022-03-01&rft.volume=59&rft.issue=3&rft.spage=1087&rft.epage=1111&rft.pages=1087-1111&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-021-10120-x&rft_dat=%3Cproquest_cross%3E2644596157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644596157&rft_id=info:pmid/&rfr_iscdi=true |