Bunched LPCNet2: Efficient Neural Vocoders Covering Devices from Cloud to Edge
Text-to-Speech (TTS) services that run on edge devices have many advantages compared to cloud TTS, e.g., latency and privacy issues. However, neural vocoders with a low complexity and small model footprint inevitably generate annoying sounds. This study proposes a Bunched LPCNet2, an improved LPCNet...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Park, Sangjun Choo, Kihyun Lee, Joohyung Porov, Anton V Osipov, Konstantin June Sig Sung |
description | Text-to-Speech (TTS) services that run on edge devices have many advantages compared to cloud TTS, e.g., latency and privacy issues. However, neural vocoders with a low complexity and small model footprint inevitably generate annoying sounds. This study proposes a Bunched LPCNet2, an improved LPCNet architecture that provides highly efficient performance in high-quality for cloud servers and in a low-complexity for low-resource edge devices. Single logistic distribution achieves computational efficiency, and insightful tricks reduce the model footprint while maintaining speech quality. A DualRate architecture, which generates a lower sampling rate from a prosody model, is also proposed to reduce maintenance costs. The experiments demonstrate that Bunched LPCNet2 generates satisfactory speech quality with a model footprint of 1.1MB while operating faster than real-time on a RPi 3B. Our audio samples are available at https://srtts.github.io/bunchedLPCNet2. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2644586926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644586926</sourcerecordid><originalsourceid>FETCH-proquest_journals_26445869263</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnEnwARUdRYyDIQ7GlZD2FUuQakv5fh38AKc7nDtjASbJJspTxAULneviOEa-xSxLAlYd_CAeJOFyLSoacQ-lUlpoGkaoyNumh7sRRpJ1UJiJrB5aONKkBTlQ1jyh6I2XMBooZUsrNldN7yj8dcnWp_JWnKOXNW9Pbqw74-3wpRp5mmY53yFP_rs-Foc84g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644586926</pqid></control><display><type>article</type><title>Bunched LPCNet2: Efficient Neural Vocoders Covering Devices from Cloud to Edge</title><source>Free E- Journals</source><creator>Park, Sangjun ; Choo, Kihyun ; Lee, Joohyung ; Porov, Anton V ; Osipov, Konstantin ; June Sig Sung</creator><creatorcontrib>Park, Sangjun ; Choo, Kihyun ; Lee, Joohyung ; Porov, Anton V ; Osipov, Konstantin ; June Sig Sung</creatorcontrib><description>Text-to-Speech (TTS) services that run on edge devices have many advantages compared to cloud TTS, e.g., latency and privacy issues. However, neural vocoders with a low complexity and small model footprint inevitably generate annoying sounds. This study proposes a Bunched LPCNet2, an improved LPCNet architecture that provides highly efficient performance in high-quality for cloud servers and in a low-complexity for low-resource edge devices. Single logistic distribution achieves computational efficiency, and insightful tricks reduce the model footprint while maintaining speech quality. A DualRate architecture, which generates a lower sampling rate from a prosody model, is also proposed to reduce maintenance costs. The experiments demonstrate that Bunched LPCNet2 generates satisfactory speech quality with a model footprint of 1.1MB while operating faster than real-time on a RPi 3B. Our audio samples are available at https://srtts.github.io/bunchedLPCNet2.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acoustics ; Cloud computing ; Complexity ; Linguistics ; Maintenance costs ; Speech recognition ; Vocoders</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Park, Sangjun</creatorcontrib><creatorcontrib>Choo, Kihyun</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><creatorcontrib>Porov, Anton V</creatorcontrib><creatorcontrib>Osipov, Konstantin</creatorcontrib><creatorcontrib>June Sig Sung</creatorcontrib><title>Bunched LPCNet2: Efficient Neural Vocoders Covering Devices from Cloud to Edge</title><title>arXiv.org</title><description>Text-to-Speech (TTS) services that run on edge devices have many advantages compared to cloud TTS, e.g., latency and privacy issues. However, neural vocoders with a low complexity and small model footprint inevitably generate annoying sounds. This study proposes a Bunched LPCNet2, an improved LPCNet architecture that provides highly efficient performance in high-quality for cloud servers and in a low-complexity for low-resource edge devices. Single logistic distribution achieves computational efficiency, and insightful tricks reduce the model footprint while maintaining speech quality. A DualRate architecture, which generates a lower sampling rate from a prosody model, is also proposed to reduce maintenance costs. The experiments demonstrate that Bunched LPCNet2 generates satisfactory speech quality with a model footprint of 1.1MB while operating faster than real-time on a RPi 3B. Our audio samples are available at https://srtts.github.io/bunchedLPCNet2.</description><subject>Acoustics</subject><subject>Cloud computing</subject><subject>Complexity</subject><subject>Linguistics</subject><subject>Maintenance costs</subject><subject>Speech recognition</subject><subject>Vocoders</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnEnwARUdRYyDIQ7GlZD2FUuQakv5fh38AKc7nDtjASbJJspTxAULneviOEa-xSxLAlYd_CAeJOFyLSoacQ-lUlpoGkaoyNumh7sRRpJ1UJiJrB5aONKkBTlQ1jyh6I2XMBooZUsrNldN7yj8dcnWp_JWnKOXNW9Pbqw74-3wpRp5mmY53yFP_rs-Foc84g</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Park, Sangjun</creator><creator>Choo, Kihyun</creator><creator>Lee, Joohyung</creator><creator>Porov, Anton V</creator><creator>Osipov, Konstantin</creator><creator>June Sig Sung</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220630</creationdate><title>Bunched LPCNet2: Efficient Neural Vocoders Covering Devices from Cloud to Edge</title><author>Park, Sangjun ; Choo, Kihyun ; Lee, Joohyung ; Porov, Anton V ; Osipov, Konstantin ; June Sig Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26445869263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Cloud computing</topic><topic>Complexity</topic><topic>Linguistics</topic><topic>Maintenance costs</topic><topic>Speech recognition</topic><topic>Vocoders</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Sangjun</creatorcontrib><creatorcontrib>Choo, Kihyun</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><creatorcontrib>Porov, Anton V</creatorcontrib><creatorcontrib>Osipov, Konstantin</creatorcontrib><creatorcontrib>June Sig Sung</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sangjun</au><au>Choo, Kihyun</au><au>Lee, Joohyung</au><au>Porov, Anton V</au><au>Osipov, Konstantin</au><au>June Sig Sung</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bunched LPCNet2: Efficient Neural Vocoders Covering Devices from Cloud to Edge</atitle><jtitle>arXiv.org</jtitle><date>2022-06-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Text-to-Speech (TTS) services that run on edge devices have many advantages compared to cloud TTS, e.g., latency and privacy issues. However, neural vocoders with a low complexity and small model footprint inevitably generate annoying sounds. This study proposes a Bunched LPCNet2, an improved LPCNet architecture that provides highly efficient performance in high-quality for cloud servers and in a low-complexity for low-resource edge devices. Single logistic distribution achieves computational efficiency, and insightful tricks reduce the model footprint while maintaining speech quality. A DualRate architecture, which generates a lower sampling rate from a prosody model, is also proposed to reduce maintenance costs. The experiments demonstrate that Bunched LPCNet2 generates satisfactory speech quality with a model footprint of 1.1MB while operating faster than real-time on a RPi 3B. Our audio samples are available at https://srtts.github.io/bunchedLPCNet2.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2644586926 |
source | Free E- Journals |
subjects | Acoustics Cloud computing Complexity Linguistics Maintenance costs Speech recognition Vocoders |
title | Bunched LPCNet2: Efficient Neural Vocoders Covering Devices from Cloud to Edge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bunched%20LPCNet2:%20Efficient%20Neural%20Vocoders%20Covering%20Devices%20from%20Cloud%20to%20Edge&rft.jtitle=arXiv.org&rft.au=Park,%20Sangjun&rft.date=2022-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2644586926%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644586926&rft_id=info:pmid/&rfr_iscdi=true |