An adaptive residual sub-sampling algorithm for kernel interpolation based on maximum likelihood estimations

In this paper we propose an enhanced version of the residual sub-sampling method (RSM) in [9] for adaptive interpolation by radial basis functions (RBFs). More precisely, we introduce in the context of sub-sampling methods a maximum profile likelihood estimation (MPLE) criterion for the optimal sele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
1. Verfasser: R Cavoretto A De Rossi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose an enhanced version of the residual sub-sampling method (RSM) in [9] for adaptive interpolation by radial basis functions (RBFs). More precisely, we introduce in the context of sub-sampling methods a maximum profile likelihood estimation (MPLE) criterion for the optimal selection of the RBF shape parameter. This choice is completely automatic, provides highly reliable and accurate results for any RBFs, and, unlike the original RSM, guarantees that the RBF interpolant exists uniquely. The efficacy of this new method, called MPLE-RSM, is tested by numerical experiments on some 1D and 2D benchmark target functions.
ISSN:2331-8422