OLAP Mining with Educational Data Mart to Predict Students’ Performance
Academic institutions always try to use a solid platform for supporting their short-to-long term decisions related to academic performance. These platforms utilize historical data and turn them into strategic decisions. The hidden patterns in the data need tools and approaches to be discovered. This...
Gespeichert in:
Veröffentlicht in: | Informatica (Ljubljana) 2022-03, Vol.46 (5), p.11-19 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 5 |
container_start_page | 11 |
container_title | Informatica (Ljubljana) |
container_volume | 46 |
creator | Najm, Ihab Ahmed Dahr, Jasim Mohammed Hamoud, Alaa Khalaf Hashim, Ali Salah Awadh, Wid Akeel Kamel, Mohammed B. M. Humadi, Aqeel Majeed |
description | Academic institutions always try to use a solid platform for supporting their short-to-long term decisions related to academic performance. These platforms utilize historical data and turn them into strategic decisions. The hidden patterns in the data need tools and approaches to be discovered. This paper aims to present a short roadmap for implementing educational data mart based on a data set from Alexandria Private Elementary School, located in the Basrah province of Iraq in the 2017-2018 academic year. The educational data mart is implemented, then the cube is constructed to perform OLAP operations and present OLAP reports. Next, OLAP mining is performed on the educational cube using nine algorithms, namely: decision tree with score method (entropy) and split method (complete)), decision tree with score method (entropy) and split method (complete)), decision tree with score method (entropy) and split method (both)), Logistic, Naive Bayes, Neural Network, clustering with expectation maximization, clustering with K-means clustering, and association rules mining. According to a comparison of all algorithms, clustering with expectation-maximization proved the highest accuracy with 96.76% for predicting the students ' performance and 96.12% for predicting students ' grades amongst all other algorithms. |
doi_str_mv | 10.31449/inf.v46i5.3853 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2644439928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644439928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-e1b69b6e146d05537a8a85c999d53e453c3aa75596df12be1ccfb0dd1060020d3</originalsourceid><addsrcrecordid>eNotkMtKAzEYRoMoWKtrtwHX0ybzJ2myLPVWaGlBXYdMktGUdqYmGcWdr-Hr-ST24urbHD4OB6FrSgZAGVPD0NSDDyYCH4DkcIJ6VHJWgBzRU9QjwEnBuRLn6CKlFSEMqCx7aLqYjZd4HprQvOLPkN_wneusyaFtzBrfmmzw3MSMc4uX0btgM37KnfNNTr_fP3jpY93GjWmsv0RntVknf_W_ffRyf_c8eSxmi4fpZDwrbClULjythKqEp0w4wjmMjDSSW6WU4-AZBwvGjPamrqZl5am1dUWco0QQUhIHfXRz_N3G9r3zKetV28WdbdKlYIyBUqXcUcMjZWObUvS13sawMfFLU6IPvfSulz700vte8AfJr17p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644439928</pqid></control><display><type>article</type><title>OLAP Mining with Educational Data Mart to Predict Students’ Performance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Najm, Ihab Ahmed ; Dahr, Jasim Mohammed ; Hamoud, Alaa Khalaf ; Hashim, Ali Salah ; Awadh, Wid Akeel ; Kamel, Mohammed B. M. ; Humadi, Aqeel Majeed</creator><creatorcontrib>Najm, Ihab Ahmed ; Dahr, Jasim Mohammed ; Hamoud, Alaa Khalaf ; Hashim, Ali Salah ; Awadh, Wid Akeel ; Kamel, Mohammed B. M. ; Humadi, Aqeel Majeed</creatorcontrib><description>Academic institutions always try to use a solid platform for supporting their short-to-long term decisions related to academic performance. These platforms utilize historical data and turn them into strategic decisions. The hidden patterns in the data need tools and approaches to be discovered. This paper aims to present a short roadmap for implementing educational data mart based on a data set from Alexandria Private Elementary School, located in the Basrah province of Iraq in the 2017-2018 academic year. The educational data mart is implemented, then the cube is constructed to perform OLAP operations and present OLAP reports. Next, OLAP mining is performed on the educational cube using nine algorithms, namely: decision tree with score method (entropy) and split method (complete)), decision tree with score method (entropy) and split method (complete)), decision tree with score method (entropy) and split method (both)), Logistic, Naive Bayes, Neural Network, clustering with expectation maximization, clustering with K-means clustering, and association rules mining. According to a comparison of all algorithms, clustering with expectation-maximization proved the highest accuracy with 96.76% for predicting the students ' performance and 96.12% for predicting students ' grades amongst all other algorithms.</description><identifier>ISSN: 0350-5596</identifier><identifier>EISSN: 1854-3871</identifier><identifier>DOI: 10.31449/inf.v46i5.3853</identifier><language>eng</language><publisher>Ljubljana: Slovenian Society Informatika / Slovensko drustvo Informatika</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Data marts ; Data mining ; Data warehouses ; Decision making ; Decision support systems ; Decision trees ; Design ; Education ; Entropy ; Executive information systems ; Horticulture ; Learning ; Maximization ; Neural networks ; Optimization ; Performance prediction ; Queries ; Servers ; Students ; Vector quantization</subject><ispartof>Informatica (Ljubljana), 2022-03, Vol.46 (5), p.11-19</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-e1b69b6e146d05537a8a85c999d53e453c3aa75596df12be1ccfb0dd1060020d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Najm, Ihab Ahmed</creatorcontrib><creatorcontrib>Dahr, Jasim Mohammed</creatorcontrib><creatorcontrib>Hamoud, Alaa Khalaf</creatorcontrib><creatorcontrib>Hashim, Ali Salah</creatorcontrib><creatorcontrib>Awadh, Wid Akeel</creatorcontrib><creatorcontrib>Kamel, Mohammed B. M.</creatorcontrib><creatorcontrib>Humadi, Aqeel Majeed</creatorcontrib><title>OLAP Mining with Educational Data Mart to Predict Students’ Performance</title><title>Informatica (Ljubljana)</title><description>Academic institutions always try to use a solid platform for supporting their short-to-long term decisions related to academic performance. These platforms utilize historical data and turn them into strategic decisions. The hidden patterns in the data need tools and approaches to be discovered. This paper aims to present a short roadmap for implementing educational data mart based on a data set from Alexandria Private Elementary School, located in the Basrah province of Iraq in the 2017-2018 academic year. The educational data mart is implemented, then the cube is constructed to perform OLAP operations and present OLAP reports. Next, OLAP mining is performed on the educational cube using nine algorithms, namely: decision tree with score method (entropy) and split method (complete)), decision tree with score method (entropy) and split method (complete)), decision tree with score method (entropy) and split method (both)), Logistic, Naive Bayes, Neural Network, clustering with expectation maximization, clustering with K-means clustering, and association rules mining. According to a comparison of all algorithms, clustering with expectation-maximization proved the highest accuracy with 96.76% for predicting the students ' performance and 96.12% for predicting students ' grades amongst all other algorithms.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data marts</subject><subject>Data mining</subject><subject>Data warehouses</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Decision trees</subject><subject>Design</subject><subject>Education</subject><subject>Entropy</subject><subject>Executive information systems</subject><subject>Horticulture</subject><subject>Learning</subject><subject>Maximization</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Performance prediction</subject><subject>Queries</subject><subject>Servers</subject><subject>Students</subject><subject>Vector quantization</subject><issn>0350-5596</issn><issn>1854-3871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkMtKAzEYRoMoWKtrtwHX0ybzJ2myLPVWaGlBXYdMktGUdqYmGcWdr-Hr-ST24urbHD4OB6FrSgZAGVPD0NSDDyYCH4DkcIJ6VHJWgBzRU9QjwEnBuRLn6CKlFSEMqCx7aLqYjZd4HprQvOLPkN_wneusyaFtzBrfmmzw3MSMc4uX0btgM37KnfNNTr_fP3jpY93GjWmsv0RntVknf_W_ffRyf_c8eSxmi4fpZDwrbClULjythKqEp0w4wjmMjDSSW6WU4-AZBwvGjPamrqZl5am1dUWco0QQUhIHfXRz_N3G9r3zKetV28WdbdKlYIyBUqXcUcMjZWObUvS13sawMfFLU6IPvfSulz700vte8AfJr17p</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Najm, Ihab Ahmed</creator><creator>Dahr, Jasim Mohammed</creator><creator>Hamoud, Alaa Khalaf</creator><creator>Hashim, Ali Salah</creator><creator>Awadh, Wid Akeel</creator><creator>Kamel, Mohammed B. M.</creator><creator>Humadi, Aqeel Majeed</creator><general>Slovenian Society Informatika / Slovensko drustvo Informatika</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20220301</creationdate><title>OLAP Mining with Educational Data Mart to Predict Students’ Performance</title><author>Najm, Ihab Ahmed ; Dahr, Jasim Mohammed ; Hamoud, Alaa Khalaf ; Hashim, Ali Salah ; Awadh, Wid Akeel ; Kamel, Mohammed B. M. ; Humadi, Aqeel Majeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-e1b69b6e146d05537a8a85c999d53e453c3aa75596df12be1ccfb0dd1060020d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data marts</topic><topic>Data mining</topic><topic>Data warehouses</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Decision trees</topic><topic>Design</topic><topic>Education</topic><topic>Entropy</topic><topic>Executive information systems</topic><topic>Horticulture</topic><topic>Learning</topic><topic>Maximization</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Performance prediction</topic><topic>Queries</topic><topic>Servers</topic><topic>Students</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najm, Ihab Ahmed</creatorcontrib><creatorcontrib>Dahr, Jasim Mohammed</creatorcontrib><creatorcontrib>Hamoud, Alaa Khalaf</creatorcontrib><creatorcontrib>Hashim, Ali Salah</creatorcontrib><creatorcontrib>Awadh, Wid Akeel</creatorcontrib><creatorcontrib>Kamel, Mohammed B. M.</creatorcontrib><creatorcontrib>Humadi, Aqeel Majeed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Informatica (Ljubljana)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najm, Ihab Ahmed</au><au>Dahr, Jasim Mohammed</au><au>Hamoud, Alaa Khalaf</au><au>Hashim, Ali Salah</au><au>Awadh, Wid Akeel</au><au>Kamel, Mohammed B. M.</au><au>Humadi, Aqeel Majeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OLAP Mining with Educational Data Mart to Predict Students’ Performance</atitle><jtitle>Informatica (Ljubljana)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>46</volume><issue>5</issue><spage>11</spage><epage>19</epage><pages>11-19</pages><issn>0350-5596</issn><eissn>1854-3871</eissn><abstract>Academic institutions always try to use a solid platform for supporting their short-to-long term decisions related to academic performance. These platforms utilize historical data and turn them into strategic decisions. The hidden patterns in the data need tools and approaches to be discovered. This paper aims to present a short roadmap for implementing educational data mart based on a data set from Alexandria Private Elementary School, located in the Basrah province of Iraq in the 2017-2018 academic year. The educational data mart is implemented, then the cube is constructed to perform OLAP operations and present OLAP reports. Next, OLAP mining is performed on the educational cube using nine algorithms, namely: decision tree with score method (entropy) and split method (complete)), decision tree with score method (entropy) and split method (complete)), decision tree with score method (entropy) and split method (both)), Logistic, Naive Bayes, Neural Network, clustering with expectation maximization, clustering with K-means clustering, and association rules mining. According to a comparison of all algorithms, clustering with expectation-maximization proved the highest accuracy with 96.76% for predicting the students ' performance and 96.12% for predicting students ' grades amongst all other algorithms.</abstract><cop>Ljubljana</cop><pub>Slovenian Society Informatika / Slovensko drustvo Informatika</pub><doi>10.31449/inf.v46i5.3853</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0350-5596 |
ispartof | Informatica (Ljubljana), 2022-03, Vol.46 (5), p.11-19 |
issn | 0350-5596 1854-3871 |
language | eng |
recordid | cdi_proquest_journals_2644439928 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Cluster analysis Clustering Data marts Data mining Data warehouses Decision making Decision support systems Decision trees Design Education Entropy Executive information systems Horticulture Learning Maximization Neural networks Optimization Performance prediction Queries Servers Students Vector quantization |
title | OLAP Mining with Educational Data Mart to Predict Students’ Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OLAP%20Mining%20with%20Educational%20Data%20Mart%20to%20Predict%20Students%E2%80%99%20Performance&rft.jtitle=Informatica%20(Ljubljana)&rft.au=Najm,%20Ihab%20Ahmed&rft.date=2022-03-01&rft.volume=46&rft.issue=5&rft.spage=11&rft.epage=19&rft.pages=11-19&rft.issn=0350-5596&rft.eissn=1854-3871&rft_id=info:doi/10.31449/inf.v46i5.3853&rft_dat=%3Cproquest_cross%3E2644439928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644439928&rft_id=info:pmid/&rfr_iscdi=true |