SSRNet: A CT Reconstruction Network Based on Sparse Connection and Weight Sharing for Parameters Reduction
In recent years, the neural networks are frequently adopted to address the issues of cone beam CT imaging. However, most of the research so far has been to build neural networks individually either in the image domain or in the projection domain for specific purposes, while the connections between t...
Gespeichert in:
Veröffentlicht in: | Sensing and imaging 2022-12, Vol.23 (1), Article 14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!