TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models

Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2022, Vol.95 (3)
Hauptverfasser: Profe, Jonas B., Kennes, Dante M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 95
creator Profe, Jonas B.
Kennes, Dante M.
description Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU 2 FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken. Graphic abstract
doi_str_mv 10.1140/epjb/s10051-022-00316-x
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2644407209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644407209</sourcerecordid><originalsourceid>FETCH-LOGICAL-p77x-6bcacbaf031d1477800800b2d7c4ca8a4bd6a118504f1a75183a4f6791c81ce33</originalsourceid><addsrcrecordid>eNpFkGFLwzAQhoMoOKe_wYCf6-7aLOn8JsNNYSDI_ByuaTo7srYmLUx__TInCgf33t3LcfcwdotwjyhgYrttMQkIMMUE0jQByFAm-zM2QpGJREImz_90ml-yqxC2AIASxYi59Xu6eFs-cOLBkKPCWU5d51syH7xqPe_90BjqbcmHpu6_eBXLvm4bctzbpvU7cvU3HTt849uh43UUtrG-NryyfhcHUe3a0rpwzS4qcsHe_OYxWy-e1vPnZPW6fJk_rpJOqX0iC0OmoCr-UaJQKgeIUaSlMsJQTqIoJSHmUxAVkppinpGopJqhydHYLBuzu9Pa-MbnYEOvt-3g48VBp1IIASqFWXTlJ1fofN1srP93IegjWn1Eq09odUSrf9DqfXYABC1v7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644407209</pqid></control><display><type>article</type><title>TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models</title><source>Springer Nature - Complete Springer Journals</source><creator>Profe, Jonas B. ; Kennes, Dante M.</creator><creatorcontrib>Profe, Jonas B. ; Kennes, Dante M.</creatorcontrib><description>Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU 2 FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken. Graphic abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-022-00316-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Fluid- and Aerodynamics ; Momentum ; Numerical methods ; Physics ; Physics and Astronomy ; Recent Developments in the Functional Renormalization Group Approach to Correlated Electron Systems ; Regular Article - Solid State and Materials ; Solid State Physics ; Unit cell ; Unity</subject><ispartof>The European physical journal. B, Condensed matter physics, 2022, Vol.95 (3)</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p77x-6bcacbaf031d1477800800b2d7c4ca8a4bd6a118504f1a75183a4f6791c81ce33</cites><orcidid>0000-0003-3399-1341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-022-00316-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-022-00316-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Profe, Jonas B.</creatorcontrib><creatorcontrib>Kennes, Dante M.</creatorcontrib><title>TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU 2 FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken. Graphic abstract</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Fluid- and Aerodynamics</subject><subject>Momentum</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Recent Developments in the Functional Renormalization Group Approach to Correlated Electron Systems</subject><subject>Regular Article - Solid State and Materials</subject><subject>Solid State Physics</subject><subject>Unit cell</subject><subject>Unity</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkGFLwzAQhoMoOKe_wYCf6-7aLOn8JsNNYSDI_ByuaTo7srYmLUx__TInCgf33t3LcfcwdotwjyhgYrttMQkIMMUE0jQByFAm-zM2QpGJREImz_90ml-yqxC2AIASxYi59Xu6eFs-cOLBkKPCWU5d51syH7xqPe_90BjqbcmHpu6_eBXLvm4bctzbpvU7cvU3HTt849uh43UUtrG-NryyfhcHUe3a0rpwzS4qcsHe_OYxWy-e1vPnZPW6fJk_rpJOqX0iC0OmoCr-UaJQKgeIUaSlMsJQTqIoJSHmUxAVkppinpGopJqhydHYLBuzu9Pa-MbnYEOvt-3g48VBp1IIASqFWXTlJ1fofN1srP93IegjWn1Eq09odUSrf9DqfXYABC1v7w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Profe, Jonas B.</creator><creator>Kennes, Dante M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><orcidid>https://orcid.org/0000-0003-3399-1341</orcidid></search><sort><creationdate>2022</creationdate><title>TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models</title><author>Profe, Jonas B. ; Kennes, Dante M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p77x-6bcacbaf031d1477800800b2d7c4ca8a4bd6a118504f1a75183a4f6791c81ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Fluid- and Aerodynamics</topic><topic>Momentum</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Recent Developments in the Functional Renormalization Group Approach to Correlated Electron Systems</topic><topic>Regular Article - Solid State and Materials</topic><topic>Solid State Physics</topic><topic>Unit cell</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Profe, Jonas B.</creatorcontrib><creatorcontrib>Kennes, Dante M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Profe, Jonas B.</au><au>Kennes, Dante M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2022</date><risdate>2022</risdate><volume>95</volume><issue>3</issue><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU 2 FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-022-00316-x</doi><orcidid>https://orcid.org/0000-0003-3399-1341</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2022, Vol.95 (3)
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2644407209
source Springer Nature - Complete Springer Journals
subjects Complex Systems
Condensed Matter Physics
Fluid- and Aerodynamics
Momentum
Numerical methods
Physics
Physics and Astronomy
Recent Developments in the Functional Renormalization Group Approach to Correlated Electron Systems
Regular Article - Solid State and Materials
Solid State Physics
Unit cell
Unity
title TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TU2FRG:%20a%20scalable%20approach%20for%20truncated%20unity%20functional%20renormalization%20group%20in%20generic%20fermionic%20models&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Profe,%20Jonas%20B.&rft.date=2022&rft.volume=95&rft.issue=3&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-022-00316-x&rft_dat=%3Cproquest_sprin%3E2644407209%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644407209&rft_id=info:pmid/&rfr_iscdi=true