TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models
Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2022, Vol.95 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 95 |
creator | Profe, Jonas B. Kennes, Dante M. |
description | Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU
2
FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken.
Graphic abstract |
doi_str_mv | 10.1140/epjb/s10051-022-00316-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2644407209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644407209</sourcerecordid><originalsourceid>FETCH-LOGICAL-p77x-6bcacbaf031d1477800800b2d7c4ca8a4bd6a118504f1a75183a4f6791c81ce33</originalsourceid><addsrcrecordid>eNpFkGFLwzAQhoMoOKe_wYCf6-7aLOn8JsNNYSDI_ByuaTo7srYmLUx__TInCgf33t3LcfcwdotwjyhgYrttMQkIMMUE0jQByFAm-zM2QpGJREImz_90ml-yqxC2AIASxYi59Xu6eFs-cOLBkKPCWU5d51syH7xqPe_90BjqbcmHpu6_eBXLvm4bctzbpvU7cvU3HTt849uh43UUtrG-NryyfhcHUe3a0rpwzS4qcsHe_OYxWy-e1vPnZPW6fJk_rpJOqX0iC0OmoCr-UaJQKgeIUaSlMsJQTqIoJSHmUxAVkppinpGopJqhydHYLBuzu9Pa-MbnYEOvt-3g48VBp1IIASqFWXTlJ1fofN1srP93IegjWn1Eq09odUSrf9DqfXYABC1v7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644407209</pqid></control><display><type>article</type><title>TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models</title><source>Springer Nature - Complete Springer Journals</source><creator>Profe, Jonas B. ; Kennes, Dante M.</creator><creatorcontrib>Profe, Jonas B. ; Kennes, Dante M.</creatorcontrib><description>Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU
2
FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken.
Graphic abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-022-00316-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Fluid- and Aerodynamics ; Momentum ; Numerical methods ; Physics ; Physics and Astronomy ; Recent Developments in the Functional Renormalization Group Approach to Correlated Electron Systems ; Regular Article - Solid State and Materials ; Solid State Physics ; Unit cell ; Unity</subject><ispartof>The European physical journal. B, Condensed matter physics, 2022, Vol.95 (3)</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p77x-6bcacbaf031d1477800800b2d7c4ca8a4bd6a118504f1a75183a4f6791c81ce33</cites><orcidid>0000-0003-3399-1341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-022-00316-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-022-00316-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Profe, Jonas B.</creatorcontrib><creatorcontrib>Kennes, Dante M.</creatorcontrib><title>TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU
2
FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken.
Graphic abstract</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Fluid- and Aerodynamics</subject><subject>Momentum</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Recent Developments in the Functional Renormalization Group Approach to Correlated Electron Systems</subject><subject>Regular Article - Solid State and Materials</subject><subject>Solid State Physics</subject><subject>Unit cell</subject><subject>Unity</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkGFLwzAQhoMoOKe_wYCf6-7aLOn8JsNNYSDI_ByuaTo7srYmLUx__TInCgf33t3LcfcwdotwjyhgYrttMQkIMMUE0jQByFAm-zM2QpGJREImz_90ml-yqxC2AIASxYi59Xu6eFs-cOLBkKPCWU5d51syH7xqPe_90BjqbcmHpu6_eBXLvm4bctzbpvU7cvU3HTt849uh43UUtrG-NryyfhcHUe3a0rpwzS4qcsHe_OYxWy-e1vPnZPW6fJk_rpJOqX0iC0OmoCr-UaJQKgeIUaSlMsJQTqIoJSHmUxAVkppinpGopJqhydHYLBuzu9Pa-MbnYEOvt-3g48VBp1IIASqFWXTlJ1fofN1srP93IegjWn1Eq09odUSrf9DqfXYABC1v7w</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Profe, Jonas B.</creator><creator>Kennes, Dante M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><orcidid>https://orcid.org/0000-0003-3399-1341</orcidid></search><sort><creationdate>2022</creationdate><title>TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models</title><author>Profe, Jonas B. ; Kennes, Dante M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p77x-6bcacbaf031d1477800800b2d7c4ca8a4bd6a118504f1a75183a4f6791c81ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Fluid- and Aerodynamics</topic><topic>Momentum</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Recent Developments in the Functional Renormalization Group Approach to Correlated Electron Systems</topic><topic>Regular Article - Solid State and Materials</topic><topic>Solid State Physics</topic><topic>Unit cell</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Profe, Jonas B.</creatorcontrib><creatorcontrib>Kennes, Dante M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Profe, Jonas B.</au><au>Kennes, Dante M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2022</date><risdate>2022</risdate><volume>95</volume><issue>3</issue><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Describing the emergence of phases of condensed matter is one of the central challenges in physics. For this purpose many numerical and analytical methods have been developed, each with their own strengths and limitations. The functional renormalization group is one of these methods bridging between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying real- and momentum space TU, called TU
2
FRG. This formalism significantly improves the scaling compared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the translational symmetry is broken.
Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-022-00316-x</doi><orcidid>https://orcid.org/0000-0003-3399-1341</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2022, Vol.95 (3) |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2644407209 |
source | Springer Nature - Complete Springer Journals |
subjects | Complex Systems Condensed Matter Physics Fluid- and Aerodynamics Momentum Numerical methods Physics Physics and Astronomy Recent Developments in the Functional Renormalization Group Approach to Correlated Electron Systems Regular Article - Solid State and Materials Solid State Physics Unit cell Unity |
title | TU2FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TU2FRG:%20a%20scalable%20approach%20for%20truncated%20unity%20functional%20renormalization%20group%20in%20generic%20fermionic%20models&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Profe,%20Jonas%20B.&rft.date=2022&rft.volume=95&rft.issue=3&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-022-00316-x&rft_dat=%3Cproquest_sprin%3E2644407209%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644407209&rft_id=info:pmid/&rfr_iscdi=true |