Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks
Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomou...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2022-03, Vol.2022, p.1-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2022 |
creator | Li, Xinru Niu, Yizhen |
description | Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomously learn chords at 1 : t − 1 moments and generate chords at t moments, by saving the hidden layer state of each batch and constructing a layer of GRU combined with a generator, thus achieving the effect of automatically learning the overall style of chords. The performance of the four models is gradually optimized by weighted averaging, and the melodic pleasantness generated by all four models has a significant positive correlation with musical coherence and creativity. |
doi_str_mv | 10.1155/2022/5882468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2643817942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643817942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a6ce6b96979f31791bd609aa1a53dfcc9b68325ca75f160eccfdb344219a2b2b3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqzgcYcKmx-Z9kWQethVpBKroLmUyGTmsnNZmx-PamtGtX9yw-7r0cAK4xuseY8xFBhIy4lIQJeQIGWOYcKqw-T1NGXEJFGDsHFzGuEMISIzQAH28uOhPsMvNtVix9qGDh29gF07SuyhY7DxfB2HX20sfGZhPXumC6JuEHExNIYbrZBv-T8mQ8z-au2_mwjpfgrDZf0V0d5xC8Pz0uimc4e51Mi_EMWkrzDhphnSiVULmqKc4VLiuBlDHYcFrV1qpSSEq4NTmvsUDO2roqKWMEK0NKUtIhuDnsTT989y52euX70KaTmghGZdrJSFJ3B2WDjzG4Wm9DszHhV2Ok99XpfXX6WF3itwe-bNrK7Jr_9R_hmW1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643817942</pqid></control><display><type>article</type><title>Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Xinru ; Niu, Yizhen</creator><contributor>Sun, Le ; Le Sun</contributor><creatorcontrib>Li, Xinru ; Niu, Yizhen ; Sun, Le ; Le Sun</creatorcontrib><description>Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomously learn chords at 1 : t − 1 moments and generate chords at t moments, by saving the hidden layer state of each batch and constructing a layer of GRU combined with a generator, thus achieving the effect of automatically learning the overall style of chords. The performance of the four models is gradually optimized by weighted averaging, and the melodic pleasantness generated by all four models has a significant positive correlation with musical coherence and creativity.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2022/5882468</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Emotions ; Feature extraction ; Generative adversarial networks ; Melody ; Music ; Musicians & conductors ; Neural networks ; Neurons ; Noise</subject><ispartof>Scientific programming, 2022-03, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Xinru Li and Yizhen Niu.</rights><rights>Copyright © 2022 Xinru Li and Yizhen Niu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a6ce6b96979f31791bd609aa1a53dfcc9b68325ca75f160eccfdb344219a2b2b3</citedby><cites>FETCH-LOGICAL-c337t-a6ce6b96979f31791bd609aa1a53dfcc9b68325ca75f160eccfdb344219a2b2b3</cites><orcidid>0000-0002-8589-6509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Sun, Le</contributor><contributor>Le Sun</contributor><creatorcontrib>Li, Xinru</creatorcontrib><creatorcontrib>Niu, Yizhen</creatorcontrib><title>Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks</title><title>Scientific programming</title><description>Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomously learn chords at 1 : t − 1 moments and generate chords at t moments, by saving the hidden layer state of each batch and constructing a layer of GRU combined with a generator, thus achieving the effect of automatically learning the overall style of chords. The performance of the four models is gradually optimized by weighted averaging, and the melodic pleasantness generated by all four models has a significant positive correlation with musical coherence and creativity.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Melody</subject><subject>Music</subject><subject>Musicians & conductors</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp90M1KAzEUBeAgCtbqzgcYcKmx-Z9kWQethVpBKroLmUyGTmsnNZmx-PamtGtX9yw-7r0cAK4xuseY8xFBhIy4lIQJeQIGWOYcKqw-T1NGXEJFGDsHFzGuEMISIzQAH28uOhPsMvNtVix9qGDh29gF07SuyhY7DxfB2HX20sfGZhPXumC6JuEHExNIYbrZBv-T8mQ8z-au2_mwjpfgrDZf0V0d5xC8Pz0uimc4e51Mi_EMWkrzDhphnSiVULmqKc4VLiuBlDHYcFrV1qpSSEq4NTmvsUDO2roqKWMEK0NKUtIhuDnsTT989y52euX70KaTmghGZdrJSFJ3B2WDjzG4Wm9DszHhV2Ok99XpfXX6WF3itwe-bNrK7Jr_9R_hmW1g</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Li, Xinru</creator><creator>Niu, Yizhen</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8589-6509</orcidid></search><sort><creationdate>20220316</creationdate><title>Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks</title><author>Li, Xinru ; Niu, Yizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a6ce6b96979f31791bd609aa1a53dfcc9b68325ca75f160eccfdb344219a2b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Melody</topic><topic>Music</topic><topic>Musicians & conductors</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinru</creatorcontrib><creatorcontrib>Niu, Yizhen</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinru</au><au>Niu, Yizhen</au><au>Sun, Le</au><au>Le Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks</atitle><jtitle>Scientific programming</jtitle><date>2022-03-16</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomously learn chords at 1 : t − 1 moments and generate chords at t moments, by saving the hidden layer state of each batch and constructing a layer of GRU combined with a generator, thus achieving the effect of automatically learning the overall style of chords. The performance of the four models is gradually optimized by weighted averaging, and the melodic pleasantness generated by all four models has a significant positive correlation with musical coherence and creativity.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/5882468</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8589-6509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2022-03, Vol.2022, p.1-7 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2643817942 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Emotions Feature extraction Generative adversarial networks Melody Music Musicians & conductors Neural networks Neurons Noise |
title | Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Chord-Constrained%20Two-Track%20Music%20Generation%20Based%20on%20Improved%20GAN%20Networks&rft.jtitle=Scientific%20programming&rft.au=Li,%20Xinru&rft.date=2022-03-16&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2022/5882468&rft_dat=%3Cproquest_cross%3E2643817942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643817942&rft_id=info:pmid/&rfr_iscdi=true |