Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks

Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2022-03, Vol.2022, p.1-7
Hauptverfasser: Li, Xinru, Niu, Yizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Scientific programming
container_volume 2022
creator Li, Xinru
Niu, Yizhen
description Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomously learn chords at 1 : t − 1 moments and generate chords at t moments, by saving the hidden layer state of each batch and constructing a layer of GRU combined with a generator, thus achieving the effect of automatically learning the overall style of chords. The performance of the four models is gradually optimized by weighted averaging, and the melodic pleasantness generated by all four models has a significant positive correlation with musical coherence and creativity.
doi_str_mv 10.1155/2022/5882468
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2643817942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643817942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a6ce6b96979f31791bd609aa1a53dfcc9b68325ca75f160eccfdb344219a2b2b3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqzgcYcKmx-Z9kWQethVpBKroLmUyGTmsnNZmx-PamtGtX9yw-7r0cAK4xuseY8xFBhIy4lIQJeQIGWOYcKqw-T1NGXEJFGDsHFzGuEMISIzQAH28uOhPsMvNtVix9qGDh29gF07SuyhY7DxfB2HX20sfGZhPXumC6JuEHExNIYbrZBv-T8mQ8z-au2_mwjpfgrDZf0V0d5xC8Pz0uimc4e51Mi_EMWkrzDhphnSiVULmqKc4VLiuBlDHYcFrV1qpSSEq4NTmvsUDO2roqKWMEK0NKUtIhuDnsTT989y52euX70KaTmghGZdrJSFJ3B2WDjzG4Wm9DszHhV2Ok99XpfXX6WF3itwe-bNrK7Jr_9R_hmW1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643817942</pqid></control><display><type>article</type><title>Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Xinru ; Niu, Yizhen</creator><contributor>Sun, Le ; Le Sun</contributor><creatorcontrib>Li, Xinru ; Niu, Yizhen ; Sun, Le ; Le Sun</creatorcontrib><description>Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomously learn chords at 1 : t − 1 moments and generate chords at t moments, by saving the hidden layer state of each batch and constructing a layer of GRU combined with a generator, thus achieving the effect of automatically learning the overall style of chords. The performance of the four models is gradually optimized by weighted averaging, and the melodic pleasantness generated by all four models has a significant positive correlation with musical coherence and creativity.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2022/5882468</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Emotions ; Feature extraction ; Generative adversarial networks ; Melody ; Music ; Musicians &amp; conductors ; Neural networks ; Neurons ; Noise</subject><ispartof>Scientific programming, 2022-03, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Xinru Li and Yizhen Niu.</rights><rights>Copyright © 2022 Xinru Li and Yizhen Niu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a6ce6b96979f31791bd609aa1a53dfcc9b68325ca75f160eccfdb344219a2b2b3</citedby><cites>FETCH-LOGICAL-c337t-a6ce6b96979f31791bd609aa1a53dfcc9b68325ca75f160eccfdb344219a2b2b3</cites><orcidid>0000-0002-8589-6509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Sun, Le</contributor><contributor>Le Sun</contributor><creatorcontrib>Li, Xinru</creatorcontrib><creatorcontrib>Niu, Yizhen</creatorcontrib><title>Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks</title><title>Scientific programming</title><description>Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomously learn chords at 1 : t − 1 moments and generate chords at t moments, by saving the hidden layer state of each batch and constructing a layer of GRU combined with a generator, thus achieving the effect of automatically learning the overall style of chords. The performance of the four models is gradually optimized by weighted averaging, and the melodic pleasantness generated by all four models has a significant positive correlation with musical coherence and creativity.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Melody</subject><subject>Music</subject><subject>Musicians &amp; conductors</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp90M1KAzEUBeAgCtbqzgcYcKmx-Z9kWQethVpBKroLmUyGTmsnNZmx-PamtGtX9yw-7r0cAK4xuseY8xFBhIy4lIQJeQIGWOYcKqw-T1NGXEJFGDsHFzGuEMISIzQAH28uOhPsMvNtVix9qGDh29gF07SuyhY7DxfB2HX20sfGZhPXumC6JuEHExNIYbrZBv-T8mQ8z-au2_mwjpfgrDZf0V0d5xC8Pz0uimc4e51Mi_EMWkrzDhphnSiVULmqKc4VLiuBlDHYcFrV1qpSSEq4NTmvsUDO2roqKWMEK0NKUtIhuDnsTT989y52euX70KaTmghGZdrJSFJ3B2WDjzG4Wm9DszHhV2Ok99XpfXX6WF3itwe-bNrK7Jr_9R_hmW1g</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Li, Xinru</creator><creator>Niu, Yizhen</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8589-6509</orcidid></search><sort><creationdate>20220316</creationdate><title>Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks</title><author>Li, Xinru ; Niu, Yizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a6ce6b96979f31791bd609aa1a53dfcc9b68325ca75f160eccfdb344219a2b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Melody</topic><topic>Music</topic><topic>Musicians &amp; conductors</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinru</creatorcontrib><creatorcontrib>Niu, Yizhen</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinru</au><au>Niu, Yizhen</au><au>Sun, Le</au><au>Le Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks</atitle><jtitle>Scientific programming</jtitle><date>2022-03-16</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Chords have a role in music for emotional expression, and the generated melodies have more richness through the constraining effect of chords. In this paper, based on a GAN network music generation model based on chord features, a GRU network is used in chord feature extraction in order to autonomously learn chords at 1 : t − 1 moments and generate chords at t moments, by saving the hidden layer state of each batch and constructing a layer of GRU combined with a generator, thus achieving the effect of automatically learning the overall style of chords. The performance of the four models is gradually optimized by weighted averaging, and the melodic pleasantness generated by all four models has a significant positive correlation with musical coherence and creativity.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/5882468</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8589-6509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2022-03, Vol.2022, p.1-7
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2643817942
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Emotions
Feature extraction
Generative adversarial networks
Melody
Music
Musicians & conductors
Neural networks
Neurons
Noise
title Research on Chord-Constrained Two-Track Music Generation Based on Improved GAN Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Chord-Constrained%20Two-Track%20Music%20Generation%20Based%20on%20Improved%20GAN%20Networks&rft.jtitle=Scientific%20programming&rft.au=Li,%20Xinru&rft.date=2022-03-16&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2022/5882468&rft_dat=%3Cproquest_cross%3E2643817942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643817942&rft_id=info:pmid/&rfr_iscdi=true