Using ARIMA-GARCH Model to Analyze Fluctuation Law of International Oil Price
It is meaningful and of certain theoretical value for the development of economy through analyzing fluctuation rules of international oil prices and forecasting the future trend of international oil prices. By composing the autoregressive integrated moving average (ARIMA) model and the combination m...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-03, Vol.2022, p.1-7 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Xiang, Ying |
description | It is meaningful and of certain theoretical value for the development of economy through analyzing fluctuation rules of international oil prices and forecasting the future trend of international oil prices. By composing the autoregressive integrated moving average (ARIMA) model and the combination model of autoregressive integrated moving average model-generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) for analyzing and forecasting international oil prices, study shows that the combination model of ARIMA (1,1,0)-GARCH (1,1) is more suitable for short-term forecasting of international oil prices with higher accuracy that the MAPE of forecasting has reduced from 1.549% to 0.045% and the RMSE of forecasting has reduced from 1.032 to 0.071. |
doi_str_mv | 10.1155/2022/3936414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2643814780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643814780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-421724cdbd7bc371cb68bf2e215aad4b0ed2b9d71a78629154b348a9263ef6503</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qXk6RJe1mG-4CNyXDgXUjaVDtiM5uWMX-9ndu1V-dweHh5z4PQPZBngDgeUULpiKVMcOAXaACxYFEMXF72O6E8Asrer9FNCFtCKMSQDNByE6r6A2fr-TKLptl6PMNLX1iHW4-zWrvDj8UT1-Vtp9vK13ih99iXeF63tqn_TtrhVeXwa1Pl9hZdldoFe3eeQ7SZvLyNZ9FiNZ2Ps0WUMybbiFOQlOeFKaTJmYTciMSU1PadtC64IbagJi0kaJkImkLMDeOJTqlgthQxYUP0cMrdNf67s6FVW9_1fVxQVHCW9D8nR-rpROWND6Gxpdo11ZduDgqIOgpTR2HqLKzHH0_4Z1UXel_9T_8CK3xn4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643814780</pqid></control><display><type>article</type><title>Using ARIMA-GARCH Model to Analyze Fluctuation Law of International Oil Price</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Xiang, Ying</creator><contributor>Pan, Wen-Tsao</contributor><creatorcontrib>Xiang, Ying ; Pan, Wen-Tsao</creatorcontrib><description>It is meaningful and of certain theoretical value for the development of economy through analyzing fluctuation rules of international oil prices and forecasting the future trend of international oil prices. By composing the autoregressive integrated moving average (ARIMA) model and the combination model of autoregressive integrated moving average model-generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) for analyzing and forecasting international oil prices, study shows that the combination model of ARIMA (1,1,0)-GARCH (1,1) is more suitable for short-term forecasting of international oil prices with higher accuracy that the MAPE of forecasting has reduced from 1.549% to 0.045% and the RMSE of forecasting has reduced from 1.032 to 0.071.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/3936414</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Autoregressive models ; Coronaviruses ; COVID-19 ; Crude oil ; Crude oil prices ; Economic development ; Economic forecasting ; Forecasting ; Hypotheses ; Pricing ; Securities markets ; Stochastic models ; Stock exchanges ; Time series</subject><ispartof>Mathematical problems in engineering, 2022-03, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Ying Xiang.</rights><rights>Copyright © 2022 Ying Xiang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-421724cdbd7bc371cb68bf2e215aad4b0ed2b9d71a78629154b348a9263ef6503</citedby><cites>FETCH-LOGICAL-c337t-421724cdbd7bc371cb68bf2e215aad4b0ed2b9d71a78629154b348a9263ef6503</cites><orcidid>0000-0002-6405-8493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Pan, Wen-Tsao</contributor><creatorcontrib>Xiang, Ying</creatorcontrib><title>Using ARIMA-GARCH Model to Analyze Fluctuation Law of International Oil Price</title><title>Mathematical problems in engineering</title><description>It is meaningful and of certain theoretical value for the development of economy through analyzing fluctuation rules of international oil prices and forecasting the future trend of international oil prices. By composing the autoregressive integrated moving average (ARIMA) model and the combination model of autoregressive integrated moving average model-generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) for analyzing and forecasting international oil prices, study shows that the combination model of ARIMA (1,1,0)-GARCH (1,1) is more suitable for short-term forecasting of international oil prices with higher accuracy that the MAPE of forecasting has reduced from 1.549% to 0.045% and the RMSE of forecasting has reduced from 1.032 to 0.071.</description><subject>Accuracy</subject><subject>Autoregressive models</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Crude oil</subject><subject>Crude oil prices</subject><subject>Economic development</subject><subject>Economic forecasting</subject><subject>Forecasting</subject><subject>Hypotheses</subject><subject>Pricing</subject><subject>Securities markets</subject><subject>Stochastic models</subject><subject>Stock exchanges</subject><subject>Time series</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qXk6RJe1mG-4CNyXDgXUjaVDtiM5uWMX-9ndu1V-dweHh5z4PQPZBngDgeUULpiKVMcOAXaACxYFEMXF72O6E8Asrer9FNCFtCKMSQDNByE6r6A2fr-TKLptl6PMNLX1iHW4-zWrvDj8UT1-Vtp9vK13ih99iXeF63tqn_TtrhVeXwa1Pl9hZdldoFe3eeQ7SZvLyNZ9FiNZ2Ps0WUMybbiFOQlOeFKaTJmYTciMSU1PadtC64IbagJi0kaJkImkLMDeOJTqlgthQxYUP0cMrdNf67s6FVW9_1fVxQVHCW9D8nR-rpROWND6Gxpdo11ZduDgqIOgpTR2HqLKzHH0_4Z1UXel_9T_8CK3xn4w</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Xiang, Ying</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6405-8493</orcidid></search><sort><creationdate>20220317</creationdate><title>Using ARIMA-GARCH Model to Analyze Fluctuation Law of International Oil Price</title><author>Xiang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-421724cdbd7bc371cb68bf2e215aad4b0ed2b9d71a78629154b348a9263ef6503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Autoregressive models</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Crude oil</topic><topic>Crude oil prices</topic><topic>Economic development</topic><topic>Economic forecasting</topic><topic>Forecasting</topic><topic>Hypotheses</topic><topic>Pricing</topic><topic>Securities markets</topic><topic>Stochastic models</topic><topic>Stock exchanges</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Ying</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Ying</au><au>Pan, Wen-Tsao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using ARIMA-GARCH Model to Analyze Fluctuation Law of International Oil Price</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-03-17</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>It is meaningful and of certain theoretical value for the development of economy through analyzing fluctuation rules of international oil prices and forecasting the future trend of international oil prices. By composing the autoregressive integrated moving average (ARIMA) model and the combination model of autoregressive integrated moving average model-generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) for analyzing and forecasting international oil prices, study shows that the combination model of ARIMA (1,1,0)-GARCH (1,1) is more suitable for short-term forecasting of international oil prices with higher accuracy that the MAPE of forecasting has reduced from 1.549% to 0.045% and the RMSE of forecasting has reduced from 1.032 to 0.071.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/3936414</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6405-8493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-03, Vol.2022, p.1-7 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2643814780 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Autoregressive models Coronaviruses COVID-19 Crude oil Crude oil prices Economic development Economic forecasting Forecasting Hypotheses Pricing Securities markets Stochastic models Stock exchanges Time series |
title | Using ARIMA-GARCH Model to Analyze Fluctuation Law of International Oil Price |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20ARIMA-GARCH%20Model%20to%20Analyze%20Fluctuation%20Law%20of%20International%20Oil%20Price&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xiang,%20Ying&rft.date=2022-03-17&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/3936414&rft_dat=%3Cproquest_cross%3E2643814780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643814780&rft_id=info:pmid/&rfr_iscdi=true |