Recursive Linear Bounds for the Vertex Chromatic Number of the Pancake Graph

The pancake graph has been the subject of research. While studies on the various aspects of the graph are abundant, results on the chromatic properties may be further enhanced. Revolving around such context, the paper advances an alternative method to produce novel linear bounds for the vertex chrom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of applied mathematics 2022-03, Vol.52 (1), p.1-10
Hauptverfasser: Asuncion, Aldrich Ellis C, Tan, Renzo Roel P, Shio, Christian Paul O Chan, Ikeda, Kazushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1
container_title IAENG international journal of applied mathematics
container_volume 52
creator Asuncion, Aldrich Ellis C
Tan, Renzo Roel P
Shio, Christian Paul O Chan
Ikeda, Kazushi
description The pancake graph has been the subject of research. While studies on the various aspects of the graph are abundant, results on the chromatic properties may be further enhanced. Revolving around such context, the paper advances an alternative method to produce novel linear bounds for the vertex chromatic number of the pancake graph. The accompanying demonstration takes advantage of symmetries inherent to the graph, capturing the prefix reversal of subsequences through a homomorphism. Contained within the argument is the incorporation of known vertex chromatic numbers for certain orders of pancake graphs, rendering tighter bounds possible upon the release of new findings. In closing, a comparison with existing bounds is done to establish the relative advantage of the proposed technique.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2643280782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643280782</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-1146de3aa3bfb6a8f3f52e17865ace26d0d346e69239211410255beb3650d4be3</originalsourceid><addsrcrecordid>eNo9jUtLxDAYRYMoOIzzHwKuC3k3WWrRUSgqMrgdkuYLrTpNzUP8-Q4qru6Fczn3BK2oMawxRqvT_97qc7TJeXJEiJZrLdkK9c8w1JSnT8D9NINN-DrW2WccYsJlBPwCqcAX7sYUD7ZMA36oBwcJx_CDn-w82DfA22SX8QKdBfueYfOXa7S7vdl1d03_uL3vrvpmMbo0lArlgVvLXXDK6sCDZEBbraQdgClPPBcKlGHcsOOYEialA8eVJF444Gt0-atdUvyokMv-NdY0Hx_3TAnONGk1498k50pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643280782</pqid></control><display><type>article</type><title>Recursive Linear Bounds for the Vertex Chromatic Number of the Pancake Graph</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Asuncion, Aldrich Ellis C ; Tan, Renzo Roel P ; Shio, Christian Paul O Chan ; Ikeda, Kazushi</creator><creatorcontrib>Asuncion, Aldrich Ellis C ; Tan, Renzo Roel P ; Shio, Christian Paul O Chan ; Ikeda, Kazushi</creatorcontrib><description>The pancake graph has been the subject of research. While studies on the various aspects of the graph are abundant, results on the chromatic properties may be further enhanced. Revolving around such context, the paper advances an alternative method to produce novel linear bounds for the vertex chromatic number of the pancake graph. The accompanying demonstration takes advantage of symmetries inherent to the graph, capturing the prefix reversal of subsequences through a homomorphism. Contained within the argument is the incorporation of known vertex chromatic numbers for certain orders of pancake graphs, rendering tighter bounds possible upon the release of new findings. In closing, a comparison with existing bounds is done to establish the relative advantage of the proposed technique.</description><identifier>ISSN: 1992-9978</identifier><identifier>EISSN: 1992-9986</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Applied mathematics ; Homomorphisms ; Informatics ; Information science ; Laboratories ; Science</subject><ispartof>IAENG international journal of applied mathematics, 2022-03, Vol.52 (1), p.1-10</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Asuncion, Aldrich Ellis C</creatorcontrib><creatorcontrib>Tan, Renzo Roel P</creatorcontrib><creatorcontrib>Shio, Christian Paul O Chan</creatorcontrib><creatorcontrib>Ikeda, Kazushi</creatorcontrib><title>Recursive Linear Bounds for the Vertex Chromatic Number of the Pancake Graph</title><title>IAENG international journal of applied mathematics</title><description>The pancake graph has been the subject of research. While studies on the various aspects of the graph are abundant, results on the chromatic properties may be further enhanced. Revolving around such context, the paper advances an alternative method to produce novel linear bounds for the vertex chromatic number of the pancake graph. The accompanying demonstration takes advantage of symmetries inherent to the graph, capturing the prefix reversal of subsequences through a homomorphism. Contained within the argument is the incorporation of known vertex chromatic numbers for certain orders of pancake graphs, rendering tighter bounds possible upon the release of new findings. In closing, a comparison with existing bounds is done to establish the relative advantage of the proposed technique.</description><subject>Applied mathematics</subject><subject>Homomorphisms</subject><subject>Informatics</subject><subject>Information science</subject><subject>Laboratories</subject><subject>Science</subject><issn>1992-9978</issn><issn>1992-9986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9jUtLxDAYRYMoOIzzHwKuC3k3WWrRUSgqMrgdkuYLrTpNzUP8-Q4qru6Fczn3BK2oMawxRqvT_97qc7TJeXJEiJZrLdkK9c8w1JSnT8D9NINN-DrW2WccYsJlBPwCqcAX7sYUD7ZMA36oBwcJx_CDn-w82DfA22SX8QKdBfueYfOXa7S7vdl1d03_uL3vrvpmMbo0lArlgVvLXXDK6sCDZEBbraQdgClPPBcKlGHcsOOYEialA8eVJF444Gt0-atdUvyokMv-NdY0Hx_3TAnONGk1498k50pw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Asuncion, Aldrich Ellis C</creator><creator>Tan, Renzo Roel P</creator><creator>Shio, Christian Paul O Chan</creator><creator>Ikeda, Kazushi</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220301</creationdate><title>Recursive Linear Bounds for the Vertex Chromatic Number of the Pancake Graph</title><author>Asuncion, Aldrich Ellis C ; Tan, Renzo Roel P ; Shio, Christian Paul O Chan ; Ikeda, Kazushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-1146de3aa3bfb6a8f3f52e17865ace26d0d346e69239211410255beb3650d4be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied mathematics</topic><topic>Homomorphisms</topic><topic>Informatics</topic><topic>Information science</topic><topic>Laboratories</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asuncion, Aldrich Ellis C</creatorcontrib><creatorcontrib>Tan, Renzo Roel P</creatorcontrib><creatorcontrib>Shio, Christian Paul O Chan</creatorcontrib><creatorcontrib>Ikeda, Kazushi</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IAENG international journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asuncion, Aldrich Ellis C</au><au>Tan, Renzo Roel P</au><au>Shio, Christian Paul O Chan</au><au>Ikeda, Kazushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive Linear Bounds for the Vertex Chromatic Number of the Pancake Graph</atitle><jtitle>IAENG international journal of applied mathematics</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>52</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1992-9978</issn><eissn>1992-9986</eissn><abstract>The pancake graph has been the subject of research. While studies on the various aspects of the graph are abundant, results on the chromatic properties may be further enhanced. Revolving around such context, the paper advances an alternative method to produce novel linear bounds for the vertex chromatic number of the pancake graph. The accompanying demonstration takes advantage of symmetries inherent to the graph, capturing the prefix reversal of subsequences through a homomorphism. Contained within the argument is the incorporation of known vertex chromatic numbers for certain orders of pancake graphs, rendering tighter bounds possible upon the release of new findings. In closing, a comparison with existing bounds is done to establish the relative advantage of the proposed technique.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1992-9978
ispartof IAENG international journal of applied mathematics, 2022-03, Vol.52 (1), p.1-10
issn 1992-9978
1992-9986
language eng
recordid cdi_proquest_journals_2643280782
source EZB-FREE-00999 freely available EZB journals
subjects Applied mathematics
Homomorphisms
Informatics
Information science
Laboratories
Science
title Recursive Linear Bounds for the Vertex Chromatic Number of the Pancake Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20Linear%20Bounds%20for%20the%20Vertex%20Chromatic%20Number%20of%20the%20Pancake%20Graph&rft.jtitle=IAENG%20international%20journal%20of%20applied%20mathematics&rft.au=Asuncion,%20Aldrich%20Ellis%20C&rft.date=2022-03-01&rft.volume=52&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1992-9978&rft.eissn=1992-9986&rft_id=info:doi/&rft_dat=%3Cproquest%3E2643280782%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643280782&rft_id=info:pmid/&rfr_iscdi=true