Hybrid thermionic-photovoltaic converter with an In0.53Ga0.47As anode
Thermionic-photovoltaic (TIPV) converters exploit both electrons and photons emitted by a hot cathode to produce electric power. In this work, a TIPV converter structured with a tungsten cathode and an In0.53Ga0.47As photovoltaic (PV) anode (0.75 eV bandgap) is demonstrated to provide an increased o...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2022-05, Vol.238, p.111588, Article 111588 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111588 |
container_title | Solar energy materials and solar cells |
container_volume | 238 |
creator | Bellucci, A. Linares, P.G. Villa, J. Martí, A. Datas, A. Trucchi, D.M. |
description | Thermionic-photovoltaic (TIPV) converters exploit both electrons and photons emitted by a hot cathode to produce electric power. In this work, a TIPV converter structured with a tungsten cathode and an In0.53Ga0.47As photovoltaic (PV) anode (0.75 eV bandgap) is demonstrated to provide an increased output voltage with respect to the reference thermionic energy converter made of the same materials and operating under similar conditions. The higher voltage, measured to be from 0.3 to 0.5 V in the explored 1150–1450 °C temperature range, is explained by the additional contribution of the PV anode. Another work function engineered TIPV converter, obtained by coating the W cathode with LaB6 and the In0.53Ga0.47As PV anode with BaFx, has led to an output power 2 orders of magnitude higher than the uncoated TIPV converter at 1200 °C cathode temperature. This opens the route towards future optimized TIPV electrodes.
•Thermionic-photovoltaic (TIPV) devices with In 0.53Ga0.47As anodes were assembled.•TIPV converter showed output voltages up to 0.5 V higher than the thermionic one.•A TIPV converter with low work function coatings (LaB6 and BaFx) was fabricated.•The coated TIPV energy converter provided an output power 100-fold than the uncoated one. |
doi_str_mv | 10.1016/j.solmat.2022.111588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2643277279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024822000125</els_id><sourcerecordid>2643277279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-97410080077ec0a66d3638328e6a08ae24f0391475eabd79cfdb236689d2b0e83</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKvfwMOC511f_jTJXoRSalsoeNFzSLOvNEu7qUla6bd3y3r2NPCYmcf8CHmmUFGg8rWtUtgfbK4YMFZRSida35AR1aouOa_1LRlBzVQJTOh78pBSCwBMcjEi8-VlE31T5B3Ggw-dd-VxF3I4h3223hUudGeMGWPx4_OusF2x6qCa8IWFSqhp6i-hwUdyt7X7hE9_OiZf7_PP2bJcfyxWs-m6dJyLXNZKUAANoBQ6sFI2XHLNmUZpQVtkYgu8pkJN0G4aVbtts2FcSl03bAOo-Zi8DL3HGL5PmLJpwyl2_UvDpOBMKabq3iUGl4shpYhbc4z-YOPFUDBXYKY1AzBzBWYGYH3sbYhhv-DsMZrkPHYOGx_RZdME_3_BL2oTc5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643277279</pqid></control><display><type>article</type><title>Hybrid thermionic-photovoltaic converter with an In0.53Ga0.47As anode</title><source>Elsevier ScienceDirect Journals</source><creator>Bellucci, A. ; Linares, P.G. ; Villa, J. ; Martí, A. ; Datas, A. ; Trucchi, D.M.</creator><creatorcontrib>Bellucci, A. ; Linares, P.G. ; Villa, J. ; Martí, A. ; Datas, A. ; Trucchi, D.M.</creatorcontrib><description>Thermionic-photovoltaic (TIPV) converters exploit both electrons and photons emitted by a hot cathode to produce electric power. In this work, a TIPV converter structured with a tungsten cathode and an In0.53Ga0.47As photovoltaic (PV) anode (0.75 eV bandgap) is demonstrated to provide an increased output voltage with respect to the reference thermionic energy converter made of the same materials and operating under similar conditions. The higher voltage, measured to be from 0.3 to 0.5 V in the explored 1150–1450 °C temperature range, is explained by the additional contribution of the PV anode. Another work function engineered TIPV converter, obtained by coating the W cathode with LaB6 and the In0.53Ga0.47As PV anode with BaFx, has led to an output power 2 orders of magnitude higher than the uncoated TIPV converter at 1200 °C cathode temperature. This opens the route towards future optimized TIPV electrodes.
•Thermionic-photovoltaic (TIPV) devices with In 0.53Ga0.47As anodes were assembled.•TIPV converter showed output voltages up to 0.5 V higher than the thermionic one.•A TIPV converter with low work function coatings (LaB6 and BaFx) was fabricated.•The coated TIPV energy converter provided an output power 100-fold than the uncoated one.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2022.111588</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodes ; Converters ; Electric potential ; Electric power ; Energy conversion ; Hot cathodes ; In0.53Ga0.47As ; Lanthanum hexaboride ; Photons ; Photovoltaic cells ; Photovoltaics ; Thermal energy ; Thermionic-photovoltaic ; Thermophotovoltaic ; Tungsten ; Voltage ; Work functions</subject><ispartof>Solar energy materials and solar cells, 2022-05, Vol.238, p.111588, Article 111588</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-97410080077ec0a66d3638328e6a08ae24f0391475eabd79cfdb236689d2b0e83</citedby><cites>FETCH-LOGICAL-c334t-97410080077ec0a66d3638328e6a08ae24f0391475eabd79cfdb236689d2b0e83</cites><orcidid>0000-0001-7509-3318 ; 0000-0002-8841-7091 ; 0000-0002-3009-4701 ; 0000-0001-8278-4707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024822000125$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bellucci, A.</creatorcontrib><creatorcontrib>Linares, P.G.</creatorcontrib><creatorcontrib>Villa, J.</creatorcontrib><creatorcontrib>Martí, A.</creatorcontrib><creatorcontrib>Datas, A.</creatorcontrib><creatorcontrib>Trucchi, D.M.</creatorcontrib><title>Hybrid thermionic-photovoltaic converter with an In0.53Ga0.47As anode</title><title>Solar energy materials and solar cells</title><description>Thermionic-photovoltaic (TIPV) converters exploit both electrons and photons emitted by a hot cathode to produce electric power. In this work, a TIPV converter structured with a tungsten cathode and an In0.53Ga0.47As photovoltaic (PV) anode (0.75 eV bandgap) is demonstrated to provide an increased output voltage with respect to the reference thermionic energy converter made of the same materials and operating under similar conditions. The higher voltage, measured to be from 0.3 to 0.5 V in the explored 1150–1450 °C temperature range, is explained by the additional contribution of the PV anode. Another work function engineered TIPV converter, obtained by coating the W cathode with LaB6 and the In0.53Ga0.47As PV anode with BaFx, has led to an output power 2 orders of magnitude higher than the uncoated TIPV converter at 1200 °C cathode temperature. This opens the route towards future optimized TIPV electrodes.
•Thermionic-photovoltaic (TIPV) devices with In 0.53Ga0.47As anodes were assembled.•TIPV converter showed output voltages up to 0.5 V higher than the thermionic one.•A TIPV converter with low work function coatings (LaB6 and BaFx) was fabricated.•The coated TIPV energy converter provided an output power 100-fold than the uncoated one.</description><subject>Anodes</subject><subject>Converters</subject><subject>Electric potential</subject><subject>Electric power</subject><subject>Energy conversion</subject><subject>Hot cathodes</subject><subject>In0.53Ga0.47As</subject><subject>Lanthanum hexaboride</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Thermal energy</subject><subject>Thermionic-photovoltaic</subject><subject>Thermophotovoltaic</subject><subject>Tungsten</subject><subject>Voltage</subject><subject>Work functions</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKvfwMOC511f_jTJXoRSalsoeNFzSLOvNEu7qUla6bd3y3r2NPCYmcf8CHmmUFGg8rWtUtgfbK4YMFZRSida35AR1aouOa_1LRlBzVQJTOh78pBSCwBMcjEi8-VlE31T5B3Ggw-dd-VxF3I4h3223hUudGeMGWPx4_OusF2x6qCa8IWFSqhp6i-hwUdyt7X7hE9_OiZf7_PP2bJcfyxWs-m6dJyLXNZKUAANoBQ6sFI2XHLNmUZpQVtkYgu8pkJN0G4aVbtts2FcSl03bAOo-Zi8DL3HGL5PmLJpwyl2_UvDpOBMKabq3iUGl4shpYhbc4z-YOPFUDBXYKY1AzBzBWYGYH3sbYhhv-DsMZrkPHYOGx_RZdME_3_BL2oTc5Q</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Bellucci, A.</creator><creator>Linares, P.G.</creator><creator>Villa, J.</creator><creator>Martí, A.</creator><creator>Datas, A.</creator><creator>Trucchi, D.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7509-3318</orcidid><orcidid>https://orcid.org/0000-0002-8841-7091</orcidid><orcidid>https://orcid.org/0000-0002-3009-4701</orcidid><orcidid>https://orcid.org/0000-0001-8278-4707</orcidid></search><sort><creationdate>202205</creationdate><title>Hybrid thermionic-photovoltaic converter with an In0.53Ga0.47As anode</title><author>Bellucci, A. ; Linares, P.G. ; Villa, J. ; Martí, A. ; Datas, A. ; Trucchi, D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-97410080077ec0a66d3638328e6a08ae24f0391475eabd79cfdb236689d2b0e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Converters</topic><topic>Electric potential</topic><topic>Electric power</topic><topic>Energy conversion</topic><topic>Hot cathodes</topic><topic>In0.53Ga0.47As</topic><topic>Lanthanum hexaboride</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Thermal energy</topic><topic>Thermionic-photovoltaic</topic><topic>Thermophotovoltaic</topic><topic>Tungsten</topic><topic>Voltage</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellucci, A.</creatorcontrib><creatorcontrib>Linares, P.G.</creatorcontrib><creatorcontrib>Villa, J.</creatorcontrib><creatorcontrib>Martí, A.</creatorcontrib><creatorcontrib>Datas, A.</creatorcontrib><creatorcontrib>Trucchi, D.M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellucci, A.</au><au>Linares, P.G.</au><au>Villa, J.</au><au>Martí, A.</au><au>Datas, A.</au><au>Trucchi, D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid thermionic-photovoltaic converter with an In0.53Ga0.47As anode</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-05</date><risdate>2022</risdate><volume>238</volume><spage>111588</spage><pages>111588-</pages><artnum>111588</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Thermionic-photovoltaic (TIPV) converters exploit both electrons and photons emitted by a hot cathode to produce electric power. In this work, a TIPV converter structured with a tungsten cathode and an In0.53Ga0.47As photovoltaic (PV) anode (0.75 eV bandgap) is demonstrated to provide an increased output voltage with respect to the reference thermionic energy converter made of the same materials and operating under similar conditions. The higher voltage, measured to be from 0.3 to 0.5 V in the explored 1150–1450 °C temperature range, is explained by the additional contribution of the PV anode. Another work function engineered TIPV converter, obtained by coating the W cathode with LaB6 and the In0.53Ga0.47As PV anode with BaFx, has led to an output power 2 orders of magnitude higher than the uncoated TIPV converter at 1200 °C cathode temperature. This opens the route towards future optimized TIPV electrodes.
•Thermionic-photovoltaic (TIPV) devices with In 0.53Ga0.47As anodes were assembled.•TIPV converter showed output voltages up to 0.5 V higher than the thermionic one.•A TIPV converter with low work function coatings (LaB6 and BaFx) was fabricated.•The coated TIPV energy converter provided an output power 100-fold than the uncoated one.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2022.111588</doi><orcidid>https://orcid.org/0000-0001-7509-3318</orcidid><orcidid>https://orcid.org/0000-0002-8841-7091</orcidid><orcidid>https://orcid.org/0000-0002-3009-4701</orcidid><orcidid>https://orcid.org/0000-0001-8278-4707</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2022-05, Vol.238, p.111588, Article 111588 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2643277279 |
source | Elsevier ScienceDirect Journals |
subjects | Anodes Converters Electric potential Electric power Energy conversion Hot cathodes In0.53Ga0.47As Lanthanum hexaboride Photons Photovoltaic cells Photovoltaics Thermal energy Thermionic-photovoltaic Thermophotovoltaic Tungsten Voltage Work functions |
title | Hybrid thermionic-photovoltaic converter with an In0.53Ga0.47As anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20thermionic-photovoltaic%20converter%20with%20an%20In0.53Ga0.47As%20anode&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Bellucci,%20A.&rft.date=2022-05&rft.volume=238&rft.spage=111588&rft.pages=111588-&rft.artnum=111588&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2022.111588&rft_dat=%3Cproquest_cross%3E2643277279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643277279&rft_id=info:pmid/&rft_els_id=S0927024822000125&rfr_iscdi=true |