Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells
In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2022-05, Vol.238, p.111610, Article 111610 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111610 |
container_title | Solar energy materials and solar cells |
container_volume | 238 |
creator | Jiang, C.-S. Albin, D. Nardone, M. Howard, K.J. Danielson, A. Munshi, A. Shimpi, T. Xiao, C. Moutinho, H.R. Al-Jassim, M.M. Teeter, G. Sampath, W. |
description | In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an irreversible degradation state (DgS) driven by long-hour light soaking at an elevated temperature. We have investigated transitions between these three states from the perspective of the electric field by nm-resolution potential imaging across the devices using Kelvin probe force microscopy (KPFM). The results exhibit different anomalous electric field profiles. At the LSS, the electric field exhibits a main peak inside the CdSeTe layer instead of the MZO/CdSeTe heterointerface, illustrating a buried homojunction (BHJ) of the device. At the DSS, a large electric field peak at the MZO/CdSeTe interface was measured, which probably resulted in the inferior fill factor at the DSS. At the DgS, the electric field peak at the MZO/CdSeTe interface increased further and a third electric field was measured at the back contact of the device. Device modeling using COMSOL software, in alignment with both the electric field and device current-voltage curves, elucidates that a low n-doped CdSeTe in the region near the MZO/CdSeTe interface caused the BHJ in the LSS and a loss of MZO doping and/or increase of the conduction band offset spike due to long-term stress caused the increased electric field near the MZO/CdSeTe interface at the DgS.
•Found different stability issues of reversible metastability and irreversible degradation in CdTe solar cells.•Found that a buried homojunction structure is the main working p-n junction of the PV device.•Found an additional electric field at the heterointerface that is associated with the cell metastability.•The electric field at the heterointerface increases and a third one appears at back contact with the cell degradation.•Device modeling in alignment with the electric field and device performance unraveled the mechanisms of stability issues. |
doi_str_mv | 10.1016/j.solmat.2022.111610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2643276857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024822000344</els_id><sourcerecordid>2643276857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3d6e36d3a5f17ee5bd9ce3d2bb73e508c595ecf5536644c42c73a3bd31f65aeb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMOC56352GR3L4KU-gEFL_UcsslsyZJuapIW-u9NWRFPnmZg3ndm3gehe4IXBBPxOCyidzuVFhRTuiCECIIv0Iw0dVsy1jaXaIZbWpeYVs01uolxwBhTwaoZ8isHOgWrlSv2PsGYbO7seISY7FYl68fC90WAI4RoOwfFDpKKSXXW2XQq1GgKG_6MDWyDMr_GpdlAkb9TodDgXLxFV71yEe5-6hx9vqw2y7dy_fH6vnxel5o1OJXMCGDCMMV7UgPwzrQamKFdVzPguNG85aB7zpkQVaUrqmumWGcY6QVX0LE5epj27oP_OuQwcvCHMOaTkoqK0Vo0vM6qalLp4GMM0Mt9sDsVTpJgeUYrBzmhlWe0ckKbbU-TDXKCo4Ugo7YwajA2ZJrSePv_gm8qGobm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643276857</pqid></control><display><type>article</type><title>Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, C.-S. ; Albin, D. ; Nardone, M. ; Howard, K.J. ; Danielson, A. ; Munshi, A. ; Shimpi, T. ; Xiao, C. ; Moutinho, H.R. ; Al-Jassim, M.M. ; Teeter, G. ; Sampath, W.</creator><creatorcontrib>Jiang, C.-S. ; Albin, D. ; Nardone, M. ; Howard, K.J. ; Danielson, A. ; Munshi, A. ; Shimpi, T. ; Xiao, C. ; Moutinho, H.R. ; Al-Jassim, M.M. ; Teeter, G. ; Sampath, W.</creatorcontrib><description>In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an irreversible degradation state (DgS) driven by long-hour light soaking at an elevated temperature. We have investigated transitions between these three states from the perspective of the electric field by nm-resolution potential imaging across the devices using Kelvin probe force microscopy (KPFM). The results exhibit different anomalous electric field profiles. At the LSS, the electric field exhibits a main peak inside the CdSeTe layer instead of the MZO/CdSeTe heterointerface, illustrating a buried homojunction (BHJ) of the device. At the DSS, a large electric field peak at the MZO/CdSeTe interface was measured, which probably resulted in the inferior fill factor at the DSS. At the DgS, the electric field peak at the MZO/CdSeTe interface increased further and a third electric field was measured at the back contact of the device. Device modeling using COMSOL software, in alignment with both the electric field and device current-voltage curves, elucidates that a low n-doped CdSeTe in the region near the MZO/CdSeTe interface caused the BHJ in the LSS and a loss of MZO doping and/or increase of the conduction band offset spike due to long-term stress caused the increased electric field near the MZO/CdSeTe interface at the DgS.
•Found different stability issues of reversible metastability and irreversible degradation in CdTe solar cells.•Found that a buried homojunction structure is the main working p-n junction of the PV device.•Found an additional electric field at the heterointerface that is associated with the cell metastability.•The electric field at the heterointerface increases and a third one appears at back contact with the cell degradation.•Device modeling in alignment with the electric field and device performance unraveled the mechanisms of stability issues.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2022.111610</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CdTe solar cell ; Conduction bands ; Degradation ; Device modeling ; Electric contacts ; Electric field ; Electric fields ; Electric potential ; High temperature ; Homojunctions ; Kelvin probe force microscopy ; Photovoltaic cells ; Solar cells ; Stability</subject><ispartof>Solar energy materials and solar cells, 2022-05, Vol.238, p.111610, Article 111610</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3d6e36d3a5f17ee5bd9ce3d2bb73e508c595ecf5536644c42c73a3bd31f65aeb3</citedby><cites>FETCH-LOGICAL-c380t-3d6e36d3a5f17ee5bd9ce3d2bb73e508c595ecf5536644c42c73a3bd31f65aeb3</cites><orcidid>0000-0001-6606-921X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024822000344$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jiang, C.-S.</creatorcontrib><creatorcontrib>Albin, D.</creatorcontrib><creatorcontrib>Nardone, M.</creatorcontrib><creatorcontrib>Howard, K.J.</creatorcontrib><creatorcontrib>Danielson, A.</creatorcontrib><creatorcontrib>Munshi, A.</creatorcontrib><creatorcontrib>Shimpi, T.</creatorcontrib><creatorcontrib>Xiao, C.</creatorcontrib><creatorcontrib>Moutinho, H.R.</creatorcontrib><creatorcontrib>Al-Jassim, M.M.</creatorcontrib><creatorcontrib>Teeter, G.</creatorcontrib><creatorcontrib>Sampath, W.</creatorcontrib><title>Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells</title><title>Solar energy materials and solar cells</title><description>In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an irreversible degradation state (DgS) driven by long-hour light soaking at an elevated temperature. We have investigated transitions between these three states from the perspective of the electric field by nm-resolution potential imaging across the devices using Kelvin probe force microscopy (KPFM). The results exhibit different anomalous electric field profiles. At the LSS, the electric field exhibits a main peak inside the CdSeTe layer instead of the MZO/CdSeTe heterointerface, illustrating a buried homojunction (BHJ) of the device. At the DSS, a large electric field peak at the MZO/CdSeTe interface was measured, which probably resulted in the inferior fill factor at the DSS. At the DgS, the electric field peak at the MZO/CdSeTe interface increased further and a third electric field was measured at the back contact of the device. Device modeling using COMSOL software, in alignment with both the electric field and device current-voltage curves, elucidates that a low n-doped CdSeTe in the region near the MZO/CdSeTe interface caused the BHJ in the LSS and a loss of MZO doping and/or increase of the conduction band offset spike due to long-term stress caused the increased electric field near the MZO/CdSeTe interface at the DgS.
•Found different stability issues of reversible metastability and irreversible degradation in CdTe solar cells.•Found that a buried homojunction structure is the main working p-n junction of the PV device.•Found an additional electric field at the heterointerface that is associated with the cell metastability.•The electric field at the heterointerface increases and a third one appears at back contact with the cell degradation.•Device modeling in alignment with the electric field and device performance unraveled the mechanisms of stability issues.</description><subject>CdTe solar cell</subject><subject>Conduction bands</subject><subject>Degradation</subject><subject>Device modeling</subject><subject>Electric contacts</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>High temperature</subject><subject>Homojunctions</subject><subject>Kelvin probe force microscopy</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMOC56352GR3L4KU-gEFL_UcsslsyZJuapIW-u9NWRFPnmZg3ndm3gehe4IXBBPxOCyidzuVFhRTuiCECIIv0Iw0dVsy1jaXaIZbWpeYVs01uolxwBhTwaoZ8isHOgWrlSv2PsGYbO7seISY7FYl68fC90WAI4RoOwfFDpKKSXXW2XQq1GgKG_6MDWyDMr_GpdlAkb9TodDgXLxFV71yEe5-6hx9vqw2y7dy_fH6vnxel5o1OJXMCGDCMMV7UgPwzrQamKFdVzPguNG85aB7zpkQVaUrqmumWGcY6QVX0LE5epj27oP_OuQwcvCHMOaTkoqK0Vo0vM6qalLp4GMM0Mt9sDsVTpJgeUYrBzmhlWe0ckKbbU-TDXKCo4Ugo7YwajA2ZJrSePv_gm8qGobm</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Jiang, C.-S.</creator><creator>Albin, D.</creator><creator>Nardone, M.</creator><creator>Howard, K.J.</creator><creator>Danielson, A.</creator><creator>Munshi, A.</creator><creator>Shimpi, T.</creator><creator>Xiao, C.</creator><creator>Moutinho, H.R.</creator><creator>Al-Jassim, M.M.</creator><creator>Teeter, G.</creator><creator>Sampath, W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6606-921X</orcidid></search><sort><creationdate>202205</creationdate><title>Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells</title><author>Jiang, C.-S. ; Albin, D. ; Nardone, M. ; Howard, K.J. ; Danielson, A. ; Munshi, A. ; Shimpi, T. ; Xiao, C. ; Moutinho, H.R. ; Al-Jassim, M.M. ; Teeter, G. ; Sampath, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3d6e36d3a5f17ee5bd9ce3d2bb73e508c595ecf5536644c42c73a3bd31f65aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CdTe solar cell</topic><topic>Conduction bands</topic><topic>Degradation</topic><topic>Device modeling</topic><topic>Electric contacts</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>High temperature</topic><topic>Homojunctions</topic><topic>Kelvin probe force microscopy</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, C.-S.</creatorcontrib><creatorcontrib>Albin, D.</creatorcontrib><creatorcontrib>Nardone, M.</creatorcontrib><creatorcontrib>Howard, K.J.</creatorcontrib><creatorcontrib>Danielson, A.</creatorcontrib><creatorcontrib>Munshi, A.</creatorcontrib><creatorcontrib>Shimpi, T.</creatorcontrib><creatorcontrib>Xiao, C.</creatorcontrib><creatorcontrib>Moutinho, H.R.</creatorcontrib><creatorcontrib>Al-Jassim, M.M.</creatorcontrib><creatorcontrib>Teeter, G.</creatorcontrib><creatorcontrib>Sampath, W.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, C.-S.</au><au>Albin, D.</au><au>Nardone, M.</au><au>Howard, K.J.</au><au>Danielson, A.</au><au>Munshi, A.</au><au>Shimpi, T.</au><au>Xiao, C.</au><au>Moutinho, H.R.</au><au>Al-Jassim, M.M.</au><au>Teeter, G.</au><au>Sampath, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-05</date><risdate>2022</risdate><volume>238</volume><spage>111610</spage><pages>111610-</pages><artnum>111610</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an irreversible degradation state (DgS) driven by long-hour light soaking at an elevated temperature. We have investigated transitions between these three states from the perspective of the electric field by nm-resolution potential imaging across the devices using Kelvin probe force microscopy (KPFM). The results exhibit different anomalous electric field profiles. At the LSS, the electric field exhibits a main peak inside the CdSeTe layer instead of the MZO/CdSeTe heterointerface, illustrating a buried homojunction (BHJ) of the device. At the DSS, a large electric field peak at the MZO/CdSeTe interface was measured, which probably resulted in the inferior fill factor at the DSS. At the DgS, the electric field peak at the MZO/CdSeTe interface increased further and a third electric field was measured at the back contact of the device. Device modeling using COMSOL software, in alignment with both the electric field and device current-voltage curves, elucidates that a low n-doped CdSeTe in the region near the MZO/CdSeTe interface caused the BHJ in the LSS and a loss of MZO doping and/or increase of the conduction band offset spike due to long-term stress caused the increased electric field near the MZO/CdSeTe interface at the DgS.
•Found different stability issues of reversible metastability and irreversible degradation in CdTe solar cells.•Found that a buried homojunction structure is the main working p-n junction of the PV device.•Found an additional electric field at the heterointerface that is associated with the cell metastability.•The electric field at the heterointerface increases and a third one appears at back contact with the cell degradation.•Device modeling in alignment with the electric field and device performance unraveled the mechanisms of stability issues.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2022.111610</doi><orcidid>https://orcid.org/0000-0001-6606-921X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2022-05, Vol.238, p.111610, Article 111610 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2643276857 |
source | Elsevier ScienceDirect Journals |
subjects | CdTe solar cell Conduction bands Degradation Device modeling Electric contacts Electric field Electric fields Electric potential High temperature Homojunctions Kelvin probe force microscopy Photovoltaic cells Solar cells Stability |
title | Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20potential%20investigation%20of%20reversible%20metastability%20and%20irreversible%20degradation%20of%20CdTe%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Jiang,%20C.-S.&rft.date=2022-05&rft.volume=238&rft.spage=111610&rft.pages=111610-&rft.artnum=111610&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2022.111610&rft_dat=%3Cproquest_cross%3E2643276857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643276857&rft_id=info:pmid/&rft_els_id=S0927024822000344&rfr_iscdi=true |