Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells

In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2022-05, Vol.238, p.111610, Article 111610
Hauptverfasser: Jiang, C.-S., Albin, D., Nardone, M., Howard, K.J., Danielson, A., Munshi, A., Shimpi, T., Xiao, C., Moutinho, H.R., Al-Jassim, M.M., Teeter, G., Sampath, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111610
container_title Solar energy materials and solar cells
container_volume 238
creator Jiang, C.-S.
Albin, D.
Nardone, M.
Howard, K.J.
Danielson, A.
Munshi, A.
Shimpi, T.
Xiao, C.
Moutinho, H.R.
Al-Jassim, M.M.
Teeter, G.
Sampath, W.
description In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an irreversible degradation state (DgS) driven by long-hour light soaking at an elevated temperature. We have investigated transitions between these three states from the perspective of the electric field by nm-resolution potential imaging across the devices using Kelvin probe force microscopy (KPFM). The results exhibit different anomalous electric field profiles. At the LSS, the electric field exhibits a main peak inside the CdSeTe layer instead of the MZO/CdSeTe heterointerface, illustrating a buried homojunction (BHJ) of the device. At the DSS, a large electric field peak at the MZO/CdSeTe interface was measured, which probably resulted in the inferior fill factor at the DSS. At the DgS, the electric field peak at the MZO/CdSeTe interface increased further and a third electric field was measured at the back contact of the device. Device modeling using COMSOL software, in alignment with both the electric field and device current-voltage curves, elucidates that a low n-doped CdSeTe in the region near the MZO/CdSeTe interface caused the BHJ in the LSS and a loss of MZO doping and/or increase of the conduction band offset spike due to long-term stress caused the increased electric field near the MZO/CdSeTe interface at the DgS. •Found different stability issues of reversible metastability and irreversible degradation in CdTe solar cells.•Found that a buried homojunction structure is the main working p-n junction of the PV device.•Found an additional electric field at the heterointerface that is associated with the cell metastability.•The electric field at the heterointerface increases and a third one appears at back contact with the cell degradation.•Device modeling in alignment with the electric field and device performance unraveled the mechanisms of stability issues.
doi_str_mv 10.1016/j.solmat.2022.111610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2643276857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024822000344</els_id><sourcerecordid>2643276857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3d6e36d3a5f17ee5bd9ce3d2bb73e508c595ecf5536644c42c73a3bd31f65aeb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMOC56352GR3L4KU-gEFL_UcsslsyZJuapIW-u9NWRFPnmZg3ndm3gehe4IXBBPxOCyidzuVFhRTuiCECIIv0Iw0dVsy1jaXaIZbWpeYVs01uolxwBhTwaoZ8isHOgWrlSv2PsGYbO7seISY7FYl68fC90WAI4RoOwfFDpKKSXXW2XQq1GgKG_6MDWyDMr_GpdlAkb9TodDgXLxFV71yEe5-6hx9vqw2y7dy_fH6vnxel5o1OJXMCGDCMMV7UgPwzrQamKFdVzPguNG85aB7zpkQVaUrqmumWGcY6QVX0LE5epj27oP_OuQwcvCHMOaTkoqK0Vo0vM6qalLp4GMM0Mt9sDsVTpJgeUYrBzmhlWe0ckKbbU-TDXKCo4Ugo7YwajA2ZJrSePv_gm8qGobm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643276857</pqid></control><display><type>article</type><title>Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, C.-S. ; Albin, D. ; Nardone, M. ; Howard, K.J. ; Danielson, A. ; Munshi, A. ; Shimpi, T. ; Xiao, C. ; Moutinho, H.R. ; Al-Jassim, M.M. ; Teeter, G. ; Sampath, W.</creator><creatorcontrib>Jiang, C.-S. ; Albin, D. ; Nardone, M. ; Howard, K.J. ; Danielson, A. ; Munshi, A. ; Shimpi, T. ; Xiao, C. ; Moutinho, H.R. ; Al-Jassim, M.M. ; Teeter, G. ; Sampath, W.</creatorcontrib><description>In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an irreversible degradation state (DgS) driven by long-hour light soaking at an elevated temperature. We have investigated transitions between these three states from the perspective of the electric field by nm-resolution potential imaging across the devices using Kelvin probe force microscopy (KPFM). The results exhibit different anomalous electric field profiles. At the LSS, the electric field exhibits a main peak inside the CdSeTe layer instead of the MZO/CdSeTe heterointerface, illustrating a buried homojunction (BHJ) of the device. At the DSS, a large electric field peak at the MZO/CdSeTe interface was measured, which probably resulted in the inferior fill factor at the DSS. At the DgS, the electric field peak at the MZO/CdSeTe interface increased further and a third electric field was measured at the back contact of the device. Device modeling using COMSOL software, in alignment with both the electric field and device current-voltage curves, elucidates that a low n-doped CdSeTe in the region near the MZO/CdSeTe interface caused the BHJ in the LSS and a loss of MZO doping and/or increase of the conduction band offset spike due to long-term stress caused the increased electric field near the MZO/CdSeTe interface at the DgS. •Found different stability issues of reversible metastability and irreversible degradation in CdTe solar cells.•Found that a buried homojunction structure is the main working p-n junction of the PV device.•Found an additional electric field at the heterointerface that is associated with the cell metastability.•The electric field at the heterointerface increases and a third one appears at back contact with the cell degradation.•Device modeling in alignment with the electric field and device performance unraveled the mechanisms of stability issues.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2022.111610</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CdTe solar cell ; Conduction bands ; Degradation ; Device modeling ; Electric contacts ; Electric field ; Electric fields ; Electric potential ; High temperature ; Homojunctions ; Kelvin probe force microscopy ; Photovoltaic cells ; Solar cells ; Stability</subject><ispartof>Solar energy materials and solar cells, 2022-05, Vol.238, p.111610, Article 111610</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3d6e36d3a5f17ee5bd9ce3d2bb73e508c595ecf5536644c42c73a3bd31f65aeb3</citedby><cites>FETCH-LOGICAL-c380t-3d6e36d3a5f17ee5bd9ce3d2bb73e508c595ecf5536644c42c73a3bd31f65aeb3</cites><orcidid>0000-0001-6606-921X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024822000344$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jiang, C.-S.</creatorcontrib><creatorcontrib>Albin, D.</creatorcontrib><creatorcontrib>Nardone, M.</creatorcontrib><creatorcontrib>Howard, K.J.</creatorcontrib><creatorcontrib>Danielson, A.</creatorcontrib><creatorcontrib>Munshi, A.</creatorcontrib><creatorcontrib>Shimpi, T.</creatorcontrib><creatorcontrib>Xiao, C.</creatorcontrib><creatorcontrib>Moutinho, H.R.</creatorcontrib><creatorcontrib>Al-Jassim, M.M.</creatorcontrib><creatorcontrib>Teeter, G.</creatorcontrib><creatorcontrib>Sampath, W.</creatorcontrib><title>Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells</title><title>Solar energy materials and solar cells</title><description>In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an irreversible degradation state (DgS) driven by long-hour light soaking at an elevated temperature. We have investigated transitions between these three states from the perspective of the electric field by nm-resolution potential imaging across the devices using Kelvin probe force microscopy (KPFM). The results exhibit different anomalous electric field profiles. At the LSS, the electric field exhibits a main peak inside the CdSeTe layer instead of the MZO/CdSeTe heterointerface, illustrating a buried homojunction (BHJ) of the device. At the DSS, a large electric field peak at the MZO/CdSeTe interface was measured, which probably resulted in the inferior fill factor at the DSS. At the DgS, the electric field peak at the MZO/CdSeTe interface increased further and a third electric field was measured at the back contact of the device. Device modeling using COMSOL software, in alignment with both the electric field and device current-voltage curves, elucidates that a low n-doped CdSeTe in the region near the MZO/CdSeTe interface caused the BHJ in the LSS and a loss of MZO doping and/or increase of the conduction band offset spike due to long-term stress caused the increased electric field near the MZO/CdSeTe interface at the DgS. •Found different stability issues of reversible metastability and irreversible degradation in CdTe solar cells.•Found that a buried homojunction structure is the main working p-n junction of the PV device.•Found an additional electric field at the heterointerface that is associated with the cell metastability.•The electric field at the heterointerface increases and a third one appears at back contact with the cell degradation.•Device modeling in alignment with the electric field and device performance unraveled the mechanisms of stability issues.</description><subject>CdTe solar cell</subject><subject>Conduction bands</subject><subject>Degradation</subject><subject>Device modeling</subject><subject>Electric contacts</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>High temperature</subject><subject>Homojunctions</subject><subject>Kelvin probe force microscopy</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMOC56352GR3L4KU-gEFL_UcsslsyZJuapIW-u9NWRFPnmZg3ndm3gehe4IXBBPxOCyidzuVFhRTuiCECIIv0Iw0dVsy1jaXaIZbWpeYVs01uolxwBhTwaoZ8isHOgWrlSv2PsGYbO7seISY7FYl68fC90WAI4RoOwfFDpKKSXXW2XQq1GgKG_6MDWyDMr_GpdlAkb9TodDgXLxFV71yEe5-6hx9vqw2y7dy_fH6vnxel5o1OJXMCGDCMMV7UgPwzrQamKFdVzPguNG85aB7zpkQVaUrqmumWGcY6QVX0LE5epj27oP_OuQwcvCHMOaTkoqK0Vo0vM6qalLp4GMM0Mt9sDsVTpJgeUYrBzmhlWe0ckKbbU-TDXKCo4Ugo7YwajA2ZJrSePv_gm8qGobm</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Jiang, C.-S.</creator><creator>Albin, D.</creator><creator>Nardone, M.</creator><creator>Howard, K.J.</creator><creator>Danielson, A.</creator><creator>Munshi, A.</creator><creator>Shimpi, T.</creator><creator>Xiao, C.</creator><creator>Moutinho, H.R.</creator><creator>Al-Jassim, M.M.</creator><creator>Teeter, G.</creator><creator>Sampath, W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6606-921X</orcidid></search><sort><creationdate>202205</creationdate><title>Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells</title><author>Jiang, C.-S. ; Albin, D. ; Nardone, M. ; Howard, K.J. ; Danielson, A. ; Munshi, A. ; Shimpi, T. ; Xiao, C. ; Moutinho, H.R. ; Al-Jassim, M.M. ; Teeter, G. ; Sampath, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3d6e36d3a5f17ee5bd9ce3d2bb73e508c595ecf5536644c42c73a3bd31f65aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CdTe solar cell</topic><topic>Conduction bands</topic><topic>Degradation</topic><topic>Device modeling</topic><topic>Electric contacts</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>High temperature</topic><topic>Homojunctions</topic><topic>Kelvin probe force microscopy</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, C.-S.</creatorcontrib><creatorcontrib>Albin, D.</creatorcontrib><creatorcontrib>Nardone, M.</creatorcontrib><creatorcontrib>Howard, K.J.</creatorcontrib><creatorcontrib>Danielson, A.</creatorcontrib><creatorcontrib>Munshi, A.</creatorcontrib><creatorcontrib>Shimpi, T.</creatorcontrib><creatorcontrib>Xiao, C.</creatorcontrib><creatorcontrib>Moutinho, H.R.</creatorcontrib><creatorcontrib>Al-Jassim, M.M.</creatorcontrib><creatorcontrib>Teeter, G.</creatorcontrib><creatorcontrib>Sampath, W.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, C.-S.</au><au>Albin, D.</au><au>Nardone, M.</au><au>Howard, K.J.</au><au>Danielson, A.</au><au>Munshi, A.</au><au>Shimpi, T.</au><au>Xiao, C.</au><au>Moutinho, H.R.</au><au>Al-Jassim, M.M.</au><au>Teeter, G.</au><au>Sampath, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-05</date><risdate>2022</risdate><volume>238</volume><spage>111610</spage><pages>111610-</pages><artnum>111610</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>In this paper, we report on the stability of CdTe devices with a structure of TCO/MZO/CdSeTe/CdTe/back-contact. The device showed reversible transitions between the light-soak state (LSS) with the best device efficiency and the dark-soak state (DSS) with an inferior efficiency. However, it showed an irreversible degradation state (DgS) driven by long-hour light soaking at an elevated temperature. We have investigated transitions between these three states from the perspective of the electric field by nm-resolution potential imaging across the devices using Kelvin probe force microscopy (KPFM). The results exhibit different anomalous electric field profiles. At the LSS, the electric field exhibits a main peak inside the CdSeTe layer instead of the MZO/CdSeTe heterointerface, illustrating a buried homojunction (BHJ) of the device. At the DSS, a large electric field peak at the MZO/CdSeTe interface was measured, which probably resulted in the inferior fill factor at the DSS. At the DgS, the electric field peak at the MZO/CdSeTe interface increased further and a third electric field was measured at the back contact of the device. Device modeling using COMSOL software, in alignment with both the electric field and device current-voltage curves, elucidates that a low n-doped CdSeTe in the region near the MZO/CdSeTe interface caused the BHJ in the LSS and a loss of MZO doping and/or increase of the conduction band offset spike due to long-term stress caused the increased electric field near the MZO/CdSeTe interface at the DgS. •Found different stability issues of reversible metastability and irreversible degradation in CdTe solar cells.•Found that a buried homojunction structure is the main working p-n junction of the PV device.•Found an additional electric field at the heterointerface that is associated with the cell metastability.•The electric field at the heterointerface increases and a third one appears at back contact with the cell degradation.•Device modeling in alignment with the electric field and device performance unraveled the mechanisms of stability issues.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2022.111610</doi><orcidid>https://orcid.org/0000-0001-6606-921X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2022-05, Vol.238, p.111610, Article 111610
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2643276857
source Elsevier ScienceDirect Journals
subjects CdTe solar cell
Conduction bands
Degradation
Device modeling
Electric contacts
Electric field
Electric fields
Electric potential
High temperature
Homojunctions
Kelvin probe force microscopy
Photovoltaic cells
Solar cells
Stability
title Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20potential%20investigation%20of%20reversible%20metastability%20and%20irreversible%20degradation%20of%20CdTe%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Jiang,%20C.-S.&rft.date=2022-05&rft.volume=238&rft.spage=111610&rft.pages=111610-&rft.artnum=111610&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2022.111610&rft_dat=%3Cproquest_cross%3E2643276857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643276857&rft_id=info:pmid/&rft_els_id=S0927024822000344&rfr_iscdi=true