Astrometric Calibration for All-sky Camera with Machine Learning

The night images obtained with an all-sky camera can provide spatial and time sampling, which can be used for measurement cloud coverage measurement and meteor monitoring. The astrometric calibration of an all-sky camera is necessary because of strong field distortions. We use machine learning to co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2022-03, Vol.134 (1033), p.35002
Hauptverfasser: Tian, J. F., Ge, L., Wu, Y., Zhou, Z. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1033
container_start_page 35002
container_title Publications of the Astronomical Society of the Pacific
container_volume 134
creator Tian, J. F.
Ge, L.
Wu, Y.
Zhou, Z. Z.
description The night images obtained with an all-sky camera can provide spatial and time sampling, which can be used for measurement cloud coverage measurement and meteor monitoring. The astrometric calibration of an all-sky camera is necessary because of strong field distortions. We use machine learning to complete the calibration of an all-sky camera. In order to prepare the data sets needed for machine learning, a particle swarm optimization algorithm is used to determine the parameters of the method proposed by Borovicka in 1995. Machine learning can transform plate coordinates to celestial coordinates and transform celestial coordinates to plate coordinates. The actual test shows that the standard deviation of residuals is of the order of 1′ for the transformation from plate coordinates to celestial coordinates and the standard deviation of residuals is of the order of 0.3 px for the transformation from celestial coordinates to the plate coordinates.
doi_str_mv 10.1088/1538-3873/ac5316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2643275174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643275174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-2c6d626b6d370f72566f233101ff128078916878d90f3256e3e9d8f7efd2aca83</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwM0ZiJfTsS2x3o6ooIBWxwGy5jk1d0iTYqVD_Pa6CYOp00t17754-Qq4p3FGQckJLlDlKgRNtSqT8hIz-VqdkBABFzpmEc3IR4waAUklhRO5nsQ_t1vbBm2yua78Kuvdtk7k2ZLO6zuPnPu23Nujs2_fr7EWbtW9strQ6NL75uCRnTtfRXv3OMXlfPLzNn_Ll6-PzfLbMTWrQ58zwijO-4hUKcIKVnDuGSIE6R1MtIaeUSyGrKThMV4t2WkknrKuYNlrimNwMuV1ov3Y29mrT7kKTXirGC2SipKJIKhhUJrQxButUF_xWh72ioA6c1AGKOkBRA6dkuR0svu3-MzsdO0WxSCZEBVgCMNVV7oj8aPoPKJ91LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643275174</pqid></control><display><type>article</type><title>Astrometric Calibration for All-sky Camera with Machine Learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Tian, J. F. ; Ge, L. ; Wu, Y. ; Zhou, Z. Z.</creator><creatorcontrib>Tian, J. F. ; Ge, L. ; Wu, Y. ; Zhou, Z. Z.</creatorcontrib><description>The night images obtained with an all-sky camera can provide spatial and time sampling, which can be used for measurement cloud coverage measurement and meteor monitoring. The astrometric calibration of an all-sky camera is necessary because of strong field distortions. We use machine learning to complete the calibration of an all-sky camera. In order to prepare the data sets needed for machine learning, a particle swarm optimization algorithm is used to determine the parameters of the method proposed by Borovicka in 1995. Machine learning can transform plate coordinates to celestial coordinates and transform celestial coordinates to plate coordinates. The actual test shows that the standard deviation of residuals is of the order of 1′ for the transformation from plate coordinates to celestial coordinates and the standard deviation of residuals is of the order of 0.3 px for the transformation from celestial coordinates to the plate coordinates.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/ac5316</identifier><language>eng</language><publisher>Philadelphia: The Astronomical Society of the Pacific</publisher><subject>All-sky cameras ; Calibration ; Cameras ; Cloud cover ; Coordinates ; Machine learning ; Neural networks ; Optimization ; Standard deviation</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2022-03, Vol.134 (1033), p.35002</ispartof><rights>2022. The Astronomical Society of the Pacific. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-2c6d626b6d370f72566f233101ff128078916878d90f3256e3e9d8f7efd2aca83</citedby><cites>FETCH-LOGICAL-c387t-2c6d626b6d370f72566f233101ff128078916878d90f3256e3e9d8f7efd2aca83</cites><orcidid>0000-0003-0672-3579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1538-3873/ac5316/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids></links><search><creatorcontrib>Tian, J. F.</creatorcontrib><creatorcontrib>Ge, L.</creatorcontrib><creatorcontrib>Wu, Y.</creatorcontrib><creatorcontrib>Zhou, Z. Z.</creatorcontrib><title>Astrometric Calibration for All-sky Camera with Machine Learning</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>Publ. Astron. Soc. Pac</addtitle><description>The night images obtained with an all-sky camera can provide spatial and time sampling, which can be used for measurement cloud coverage measurement and meteor monitoring. The astrometric calibration of an all-sky camera is necessary because of strong field distortions. We use machine learning to complete the calibration of an all-sky camera. In order to prepare the data sets needed for machine learning, a particle swarm optimization algorithm is used to determine the parameters of the method proposed by Borovicka in 1995. Machine learning can transform plate coordinates to celestial coordinates and transform celestial coordinates to plate coordinates. The actual test shows that the standard deviation of residuals is of the order of 1′ for the transformation from plate coordinates to celestial coordinates and the standard deviation of residuals is of the order of 0.3 px for the transformation from celestial coordinates to the plate coordinates.</description><subject>All-sky cameras</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Cloud cover</subject><subject>Coordinates</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Standard deviation</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwM0ZiJfTsS2x3o6ooIBWxwGy5jk1d0iTYqVD_Pa6CYOp00t17754-Qq4p3FGQckJLlDlKgRNtSqT8hIz-VqdkBABFzpmEc3IR4waAUklhRO5nsQ_t1vbBm2yua78Kuvdtk7k2ZLO6zuPnPu23Nujs2_fr7EWbtW9strQ6NL75uCRnTtfRXv3OMXlfPLzNn_Ll6-PzfLbMTWrQ58zwijO-4hUKcIKVnDuGSIE6R1MtIaeUSyGrKThMV4t2WkknrKuYNlrimNwMuV1ov3Y29mrT7kKTXirGC2SipKJIKhhUJrQxButUF_xWh72ioA6c1AGKOkBRA6dkuR0svu3-MzsdO0WxSCZEBVgCMNVV7oj8aPoPKJ91LA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Tian, J. F.</creator><creator>Ge, L.</creator><creator>Wu, Y.</creator><creator>Zhou, Z. Z.</creator><general>The Astronomical Society of the Pacific</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><orcidid>https://orcid.org/0000-0003-0672-3579</orcidid></search><sort><creationdate>20220301</creationdate><title>Astrometric Calibration for All-sky Camera with Machine Learning</title><author>Tian, J. F. ; Ge, L. ; Wu, Y. ; Zhou, Z. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-2c6d626b6d370f72566f233101ff128078916878d90f3256e3e9d8f7efd2aca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>All-sky cameras</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Cloud cover</topic><topic>Coordinates</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, J. F.</creatorcontrib><creatorcontrib>Ge, L.</creatorcontrib><creatorcontrib>Wu, Y.</creatorcontrib><creatorcontrib>Zhou, Z. Z.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, J. F.</au><au>Ge, L.</au><au>Wu, Y.</au><au>Zhou, Z. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Astrometric Calibration for All-sky Camera with Machine Learning</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>134</volume><issue>1033</issue><spage>35002</spage><pages>35002-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>The night images obtained with an all-sky camera can provide spatial and time sampling, which can be used for measurement cloud coverage measurement and meteor monitoring. The astrometric calibration of an all-sky camera is necessary because of strong field distortions. We use machine learning to complete the calibration of an all-sky camera. In order to prepare the data sets needed for machine learning, a particle swarm optimization algorithm is used to determine the parameters of the method proposed by Borovicka in 1995. Machine learning can transform plate coordinates to celestial coordinates and transform celestial coordinates to plate coordinates. The actual test shows that the standard deviation of residuals is of the order of 1′ for the transformation from plate coordinates to celestial coordinates and the standard deviation of residuals is of the order of 0.3 px for the transformation from celestial coordinates to the plate coordinates.</abstract><cop>Philadelphia</cop><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/ac5316</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0672-3579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2022-03, Vol.134 (1033), p.35002
issn 0004-6280
1538-3873
language eng
recordid cdi_proquest_journals_2643275174
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
subjects All-sky cameras
Calibration
Cameras
Cloud cover
Coordinates
Machine learning
Neural networks
Optimization
Standard deviation
title Astrometric Calibration for All-sky Camera with Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Astrometric%20Calibration%20for%20All-sky%20Camera%20with%20Machine%20Learning&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Tian,%20J.%20F.&rft.date=2022-03-01&rft.volume=134&rft.issue=1033&rft.spage=35002&rft.pages=35002-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/ac5316&rft_dat=%3Cproquest_cross%3E2643275174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643275174&rft_id=info:pmid/&rfr_iscdi=true