Oscillatory integrals with phase functions of positive real powers and asymptotic expansions

As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Nagano, Toshio, Miyazaki, Naoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nagano, Toshio
Miyazaki, Naoya
description As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former for degenerate phases with positive real powers without using resolution of singularities. For this aim, we first generalize Fresnel integrals as oscillatory integrals with phase functions of positive real powers. Next, by using this result, we have asymptotic expansions of oscillatory integrals for degenerate phases with positive real powers including moderate oscillations and for a wider amplitude class in one variable. Moreover, we obtain asymptotic expansions of oscillatory integrals for degenerate phases consisting of sums of monomials in each variable including the types \(A_{k}\), \(E_6\), \(E_8\) in multivariable.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2643123365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643123365</sourcerecordid><originalsourceid>FETCH-proquest_journals_26431233653</originalsourceid><addsrcrecordid>eNqNjkEKwjAURIMgWLR3-OC60CZtdS-KOzcuBQn116bEJOan1t7eCB7A1TDMm2FmLOFCFNm25HzBUqI-z3Neb3hViYRdTtQorWWwfgJlAt691ASjCh24ThJCO5gmKGsIbAvOkgrqheBR6uhG9ATS3EDS9HDBBtUAvp009G2s2LyNa5j-dMnWh_15d8yct88BKVx7O3gToyuvS1HEn3Ul_qM-jjhE3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643123365</pqid></control><display><type>article</type><title>Oscillatory integrals with phase functions of positive real powers and asymptotic expansions</title><source>Free E- Journals</source><creator>Nagano, Toshio ; Miyazaki, Naoya</creator><creatorcontrib>Nagano, Toshio ; Miyazaki, Naoya</creatorcontrib><description>As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former for degenerate phases with positive real powers without using resolution of singularities. For this aim, we first generalize Fresnel integrals as oscillatory integrals with phase functions of positive real powers. Next, by using this result, we have asymptotic expansions of oscillatory integrals for degenerate phases with positive real powers including moderate oscillations and for a wider amplitude class in one variable. Moreover, we obtain asymptotic expansions of oscillatory integrals for degenerate phases consisting of sums of monomials in each variable including the types \(A_{k}\), \(E_6\), \(E_8\) in multivariable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Asymptotic series ; Fresnel integrals ; Integrals ; Phases ; Singularities</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nagano, Toshio</creatorcontrib><creatorcontrib>Miyazaki, Naoya</creatorcontrib><title>Oscillatory integrals with phase functions of positive real powers and asymptotic expansions</title><title>arXiv.org</title><description>As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former for degenerate phases with positive real powers without using resolution of singularities. For this aim, we first generalize Fresnel integrals as oscillatory integrals with phase functions of positive real powers. Next, by using this result, we have asymptotic expansions of oscillatory integrals for degenerate phases with positive real powers including moderate oscillations and for a wider amplitude class in one variable. Moreover, we obtain asymptotic expansions of oscillatory integrals for degenerate phases consisting of sums of monomials in each variable including the types \(A_{k}\), \(E_6\), \(E_8\) in multivariable.</description><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Fresnel integrals</subject><subject>Integrals</subject><subject>Phases</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjkEKwjAURIMgWLR3-OC60CZtdS-KOzcuBQn116bEJOan1t7eCB7A1TDMm2FmLOFCFNm25HzBUqI-z3Neb3hViYRdTtQorWWwfgJlAt691ASjCh24ThJCO5gmKGsIbAvOkgrqheBR6uhG9ATS3EDS9HDBBtUAvp009G2s2LyNa5j-dMnWh_15d8yct88BKVx7O3gToyuvS1HEn3Ul_qM-jjhE3w</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>Nagano, Toshio</creator><creator>Miyazaki, Naoya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220324</creationdate><title>Oscillatory integrals with phase functions of positive real powers and asymptotic expansions</title><author>Nagano, Toshio ; Miyazaki, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26431233653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Fresnel integrals</topic><topic>Integrals</topic><topic>Phases</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Nagano, Toshio</creatorcontrib><creatorcontrib>Miyazaki, Naoya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagano, Toshio</au><au>Miyazaki, Naoya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Oscillatory integrals with phase functions of positive real powers and asymptotic expansions</atitle><jtitle>arXiv.org</jtitle><date>2022-03-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former for degenerate phases with positive real powers without using resolution of singularities. For this aim, we first generalize Fresnel integrals as oscillatory integrals with phase functions of positive real powers. Next, by using this result, we have asymptotic expansions of oscillatory integrals for degenerate phases with positive real powers including moderate oscillations and for a wider amplitude class in one variable. Moreover, we obtain asymptotic expansions of oscillatory integrals for degenerate phases consisting of sums of monomials in each variable including the types \(A_{k}\), \(E_6\), \(E_8\) in multivariable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2643123365
source Free E- Journals
subjects Asymptotic methods
Asymptotic series
Fresnel integrals
Integrals
Phases
Singularities
title Oscillatory integrals with phase functions of positive real powers and asymptotic expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Oscillatory%20integrals%20with%20phase%20functions%20of%20positive%20real%20powers%20and%20asymptotic%20expansions&rft.jtitle=arXiv.org&rft.au=Nagano,%20Toshio&rft.date=2022-03-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2643123365%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643123365&rft_id=info:pmid/&rfr_iscdi=true