Oscillatory integrals with phase functions of positive real powers and asymptotic expansions
As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nagano, Toshio Miyazaki, Naoya |
description | As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former for degenerate phases with positive real powers without using resolution of singularities. For this aim, we first generalize Fresnel integrals as oscillatory integrals with phase functions of positive real powers. Next, by using this result, we have asymptotic expansions of oscillatory integrals for degenerate phases with positive real powers including moderate oscillations and for a wider amplitude class in one variable. Moreover, we obtain asymptotic expansions of oscillatory integrals for degenerate phases consisting of sums of monomials in each variable including the types \(A_{k}\), \(E_6\), \(E_8\) in multivariable. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2643123365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2643123365</sourcerecordid><originalsourceid>FETCH-proquest_journals_26431233653</originalsourceid><addsrcrecordid>eNqNjkEKwjAURIMgWLR3-OC60CZtdS-KOzcuBQn116bEJOan1t7eCB7A1TDMm2FmLOFCFNm25HzBUqI-z3Neb3hViYRdTtQorWWwfgJlAt691ASjCh24ThJCO5gmKGsIbAvOkgrqheBR6uhG9ATS3EDS9HDBBtUAvp009G2s2LyNa5j-dMnWh_15d8yct88BKVx7O3gToyuvS1HEn3Ul_qM-jjhE3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643123365</pqid></control><display><type>article</type><title>Oscillatory integrals with phase functions of positive real powers and asymptotic expansions</title><source>Free E- Journals</source><creator>Nagano, Toshio ; Miyazaki, Naoya</creator><creatorcontrib>Nagano, Toshio ; Miyazaki, Naoya</creatorcontrib><description>As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former for degenerate phases with positive real powers without using resolution of singularities. For this aim, we first generalize Fresnel integrals as oscillatory integrals with phase functions of positive real powers. Next, by using this result, we have asymptotic expansions of oscillatory integrals for degenerate phases with positive real powers including moderate oscillations and for a wider amplitude class in one variable. Moreover, we obtain asymptotic expansions of oscillatory integrals for degenerate phases consisting of sums of monomials in each variable including the types \(A_{k}\), \(E_6\), \(E_8\) in multivariable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Asymptotic series ; Fresnel integrals ; Integrals ; Phases ; Singularities</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nagano, Toshio</creatorcontrib><creatorcontrib>Miyazaki, Naoya</creatorcontrib><title>Oscillatory integrals with phase functions of positive real powers and asymptotic expansions</title><title>arXiv.org</title><description>As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former for degenerate phases with positive real powers without using resolution of singularities. For this aim, we first generalize Fresnel integrals as oscillatory integrals with phase functions of positive real powers. Next, by using this result, we have asymptotic expansions of oscillatory integrals for degenerate phases with positive real powers including moderate oscillations and for a wider amplitude class in one variable. Moreover, we obtain asymptotic expansions of oscillatory integrals for degenerate phases consisting of sums of monomials in each variable including the types \(A_{k}\), \(E_6\), \(E_8\) in multivariable.</description><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Fresnel integrals</subject><subject>Integrals</subject><subject>Phases</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjkEKwjAURIMgWLR3-OC60CZtdS-KOzcuBQn116bEJOan1t7eCB7A1TDMm2FmLOFCFNm25HzBUqI-z3Neb3hViYRdTtQorWWwfgJlAt691ASjCh24ThJCO5gmKGsIbAvOkgrqheBR6uhG9ATS3EDS9HDBBtUAvp009G2s2LyNa5j-dMnWh_15d8yct88BKVx7O3gToyuvS1HEn3Ul_qM-jjhE3w</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>Nagano, Toshio</creator><creator>Miyazaki, Naoya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220324</creationdate><title>Oscillatory integrals with phase functions of positive real powers and asymptotic expansions</title><author>Nagano, Toshio ; Miyazaki, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26431233653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Fresnel integrals</topic><topic>Integrals</topic><topic>Phases</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Nagano, Toshio</creatorcontrib><creatorcontrib>Miyazaki, Naoya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagano, Toshio</au><au>Miyazaki, Naoya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Oscillatory integrals with phase functions of positive real powers and asymptotic expansions</atitle><jtitle>arXiv.org</jtitle><date>2022-03-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>As to methods for expanding an oscillatory integral into an asymptotic series with respect to the parameter, the method of stationary phase for the non-degenerate phases and the method of using resolution of singularities for degenerate phases are known. The aim of this paper is to extend the former for degenerate phases with positive real powers without using resolution of singularities. For this aim, we first generalize Fresnel integrals as oscillatory integrals with phase functions of positive real powers. Next, by using this result, we have asymptotic expansions of oscillatory integrals for degenerate phases with positive real powers including moderate oscillations and for a wider amplitude class in one variable. Moreover, we obtain asymptotic expansions of oscillatory integrals for degenerate phases consisting of sums of monomials in each variable including the types \(A_{k}\), \(E_6\), \(E_8\) in multivariable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2643123365 |
source | Free E- Journals |
subjects | Asymptotic methods Asymptotic series Fresnel integrals Integrals Phases Singularities |
title | Oscillatory integrals with phase functions of positive real powers and asymptotic expansions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Oscillatory%20integrals%20with%20phase%20functions%20of%20positive%20real%20powers%20and%20asymptotic%20expansions&rft.jtitle=arXiv.org&rft.au=Nagano,%20Toshio&rft.date=2022-03-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2643123365%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643123365&rft_id=info:pmid/&rfr_iscdi=true |