Predictive Current Control of Six-Phase IM-Based Nonisolated Integrated On-Board Battery Charger Under Different Winding Configurations
Integrated on-board battery charging (IOBC) constitutes one of the future trends and the potential state-of-the-art technologies proposed for high-power chargers of electric vehicles. Model predictive control has recently been favored in different applications due to its simplicity in defining new c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2022-07, Vol.37 (7), p.8345-8358 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8358 |
---|---|
container_issue | 7 |
container_start_page | 8345 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Habib, Abdelrahman Shawier, Abdullah Abdel-Majeed, Mahmoud Said Abdel-Khalik, Ayman Samy Hamad, Mostafa S. Hamdy, Ragi A. Ahmed, Shehab |
description | Integrated on-board battery charging (IOBC) constitutes one of the future trends and the potential state-of-the-art technologies proposed for high-power chargers of electric vehicles. Model predictive control has recently been favored in different applications due to its simplicity in defining new control objectives and the straightforward handling of nonlinear constraints. In this article, the predictive current control (PCC) is applied to a six-phase induction-machine-based IOBC with three different winding configurations. From the grid perspective, this article introduces the required winding connections that maximize the charging grid current. Under PCC, different stator phases are controlled to draw balanced three-phase grid currents through controlling the machine nontorque-producing xy current components while ensuring zero average/ripple torque production. This article also discusses the effect of winding configuration on the mapping of the 64 available voltage vectors to the αβ , xy , and 0 + 0 − subspaces. The optimal subset voltage vectors of each configuration that achieve the highest possible dc-link utilization, zero torque production, minimum total harmonic distortion (THD), and unity power factor are then introduced. The feasibility to employ the concept of virtual voltage vectors to improve the current quality is also investigated. The three six-phase configurations are obtained from an externally reconfigured 1 kW 12-phase induction motor, which has been used to experimentally validate the theoretical findings. |
doi_str_mv | 10.1109/TPEL.2022.3149620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2643032946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9707642</ieee_id><sourcerecordid>2643032946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d241eb67f3fa435d9c317d08af536c252c0191eeb79a7ecca61280c1c0dadc83</originalsourceid><addsrcrecordid>eNo9kMtuUzEQhq0KJNLCA6BuLLE-YcY-Ny_JaSmR0jYSQSyPXHucugp2sR1En4DX7klTsZl_Fv9F-hj7iDBHBPV5s75czQUIMZdYq1bACZuhqrEChO4Nm0HfN1WvlHzHTnN-AMC6AZyxf-tE1pvi_xAf9ilRKHyIoaS449Hx7_5vtb7XmfjyulpMavlNDD7HnS7TvwyFtunlvQ3VIupk-UKXQumJD_c6bSnxH8FO98I7Ry_tP32wPmwPK85v91Pax5Dfs7dO7zJ9eNUztvl6uRm-Vavbq-XwZVUZoWSprKiR7trOSadr2VhlJHYWeu0a2RrRCAOokOiuU7ojY3SLogeDBqy2ppdn7NOx9jHF33vKZXyI-xSmxVG0tQQpVN1OLjy6TIo5J3LjY_K_dHoaEcYD7vGAezzgHl9xT5nzY8YT0X-_6qBrayGfAVQ3fYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643032946</pqid></control><display><type>article</type><title>Predictive Current Control of Six-Phase IM-Based Nonisolated Integrated On-Board Battery Charger Under Different Winding Configurations</title><source>IEEE</source><creator>Habib, Abdelrahman ; Shawier, Abdullah ; Abdel-Majeed, Mahmoud Said ; Abdel-Khalik, Ayman Samy ; Hamad, Mostafa S. ; Hamdy, Ragi A. ; Ahmed, Shehab</creator><creatorcontrib>Habib, Abdelrahman ; Shawier, Abdullah ; Abdel-Majeed, Mahmoud Said ; Abdel-Khalik, Ayman Samy ; Hamad, Mostafa S. ; Hamdy, Ragi A. ; Ahmed, Shehab</creatorcontrib><description>Integrated on-board battery charging (IOBC) constitutes one of the future trends and the potential state-of-the-art technologies proposed for high-power chargers of electric vehicles. Model predictive control has recently been favored in different applications due to its simplicity in defining new control objectives and the straightforward handling of nonlinear constraints. In this article, the predictive current control (PCC) is applied to a six-phase induction-machine-based IOBC with three different winding configurations. From the grid perspective, this article introduces the required winding connections that maximize the charging grid current. Under PCC, different stator phases are controlled to draw balanced three-phase grid currents through controlling the machine nontorque-producing xy current components while ensuring zero average/ripple torque production. This article also discusses the effect of winding configuration on the mapping of the 64 available voltage vectors to the αβ , xy , and 0 + 0 − subspaces. The optimal subset voltage vectors of each configuration that achieve the highest possible dc-link utilization, zero torque production, minimum total harmonic distortion (THD), and unity power factor are then introduced. The feasibility to employ the concept of virtual voltage vectors to improve the current quality is also investigated. The three six-phase configurations are obtained from an externally reconfigured 1 kW 12-phase induction motor, which has been used to experimentally validate the theoretical findings.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3149620</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymmetrical six-phase (A6P) ; Batteries ; Battery chargers ; Charging ; Configurations ; dual three-phase (D3P) ; Electric potential ; Electric vehicles ; Electronic equipment ; Harmonic distortion ; Induction motors ; integrated on-board battery chargers ; Permanent magnet motors ; Power factor ; Predictive control ; predictive current control (PCC) ; Propulsion ; Reluctance motors ; six-phase ; Stator windings ; Subspaces ; symmetrical six-phase (S6P) ; Torque ; virtual vectors ; Voltage ; Winding ; Windings</subject><ispartof>IEEE transactions on power electronics, 2022-07, Vol.37 (7), p.8345-8358</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d241eb67f3fa435d9c317d08af536c252c0191eeb79a7ecca61280c1c0dadc83</citedby><cites>FETCH-LOGICAL-c293t-d241eb67f3fa435d9c317d08af536c252c0191eeb79a7ecca61280c1c0dadc83</cites><orcidid>0000-0003-0073-8745 ; 0000-0003-1910-1242 ; 0000-0001-5162-4954 ; 0000-0002-0005-9622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9707642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9707642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Habib, Abdelrahman</creatorcontrib><creatorcontrib>Shawier, Abdullah</creatorcontrib><creatorcontrib>Abdel-Majeed, Mahmoud Said</creatorcontrib><creatorcontrib>Abdel-Khalik, Ayman Samy</creatorcontrib><creatorcontrib>Hamad, Mostafa S.</creatorcontrib><creatorcontrib>Hamdy, Ragi A.</creatorcontrib><creatorcontrib>Ahmed, Shehab</creatorcontrib><title>Predictive Current Control of Six-Phase IM-Based Nonisolated Integrated On-Board Battery Charger Under Different Winding Configurations</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Integrated on-board battery charging (IOBC) constitutes one of the future trends and the potential state-of-the-art technologies proposed for high-power chargers of electric vehicles. Model predictive control has recently been favored in different applications due to its simplicity in defining new control objectives and the straightforward handling of nonlinear constraints. In this article, the predictive current control (PCC) is applied to a six-phase induction-machine-based IOBC with three different winding configurations. From the grid perspective, this article introduces the required winding connections that maximize the charging grid current. Under PCC, different stator phases are controlled to draw balanced three-phase grid currents through controlling the machine nontorque-producing xy current components while ensuring zero average/ripple torque production. This article also discusses the effect of winding configuration on the mapping of the 64 available voltage vectors to the αβ , xy , and 0 + 0 − subspaces. The optimal subset voltage vectors of each configuration that achieve the highest possible dc-link utilization, zero torque production, minimum total harmonic distortion (THD), and unity power factor are then introduced. The feasibility to employ the concept of virtual voltage vectors to improve the current quality is also investigated. The three six-phase configurations are obtained from an externally reconfigured 1 kW 12-phase induction motor, which has been used to experimentally validate the theoretical findings.</description><subject>Asymmetrical six-phase (A6P)</subject><subject>Batteries</subject><subject>Battery chargers</subject><subject>Charging</subject><subject>Configurations</subject><subject>dual three-phase (D3P)</subject><subject>Electric potential</subject><subject>Electric vehicles</subject><subject>Electronic equipment</subject><subject>Harmonic distortion</subject><subject>Induction motors</subject><subject>integrated on-board battery chargers</subject><subject>Permanent magnet motors</subject><subject>Power factor</subject><subject>Predictive control</subject><subject>predictive current control (PCC)</subject><subject>Propulsion</subject><subject>Reluctance motors</subject><subject>six-phase</subject><subject>Stator windings</subject><subject>Subspaces</subject><subject>symmetrical six-phase (S6P)</subject><subject>Torque</subject><subject>virtual vectors</subject><subject>Voltage</subject><subject>Winding</subject><subject>Windings</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtuUzEQhq0KJNLCA6BuLLE-YcY-Ny_JaSmR0jYSQSyPXHucugp2sR1En4DX7klTsZl_Fv9F-hj7iDBHBPV5s75czQUIMZdYq1bACZuhqrEChO4Nm0HfN1WvlHzHTnN-AMC6AZyxf-tE1pvi_xAf9ilRKHyIoaS449Hx7_5vtb7XmfjyulpMavlNDD7HnS7TvwyFtunlvQ3VIupk-UKXQumJD_c6bSnxH8FO98I7Ry_tP32wPmwPK85v91Pax5Dfs7dO7zJ9eNUztvl6uRm-Vavbq-XwZVUZoWSprKiR7trOSadr2VhlJHYWeu0a2RrRCAOokOiuU7ojY3SLogeDBqy2ppdn7NOx9jHF33vKZXyI-xSmxVG0tQQpVN1OLjy6TIo5J3LjY_K_dHoaEcYD7vGAezzgHl9xT5nzY8YT0X-_6qBrayGfAVQ3fYY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Habib, Abdelrahman</creator><creator>Shawier, Abdullah</creator><creator>Abdel-Majeed, Mahmoud Said</creator><creator>Abdel-Khalik, Ayman Samy</creator><creator>Hamad, Mostafa S.</creator><creator>Hamdy, Ragi A.</creator><creator>Ahmed, Shehab</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0073-8745</orcidid><orcidid>https://orcid.org/0000-0003-1910-1242</orcidid><orcidid>https://orcid.org/0000-0001-5162-4954</orcidid><orcidid>https://orcid.org/0000-0002-0005-9622</orcidid></search><sort><creationdate>20220701</creationdate><title>Predictive Current Control of Six-Phase IM-Based Nonisolated Integrated On-Board Battery Charger Under Different Winding Configurations</title><author>Habib, Abdelrahman ; Shawier, Abdullah ; Abdel-Majeed, Mahmoud Said ; Abdel-Khalik, Ayman Samy ; Hamad, Mostafa S. ; Hamdy, Ragi A. ; Ahmed, Shehab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d241eb67f3fa435d9c317d08af536c252c0191eeb79a7ecca61280c1c0dadc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetrical six-phase (A6P)</topic><topic>Batteries</topic><topic>Battery chargers</topic><topic>Charging</topic><topic>Configurations</topic><topic>dual three-phase (D3P)</topic><topic>Electric potential</topic><topic>Electric vehicles</topic><topic>Electronic equipment</topic><topic>Harmonic distortion</topic><topic>Induction motors</topic><topic>integrated on-board battery chargers</topic><topic>Permanent magnet motors</topic><topic>Power factor</topic><topic>Predictive control</topic><topic>predictive current control (PCC)</topic><topic>Propulsion</topic><topic>Reluctance motors</topic><topic>six-phase</topic><topic>Stator windings</topic><topic>Subspaces</topic><topic>symmetrical six-phase (S6P)</topic><topic>Torque</topic><topic>virtual vectors</topic><topic>Voltage</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habib, Abdelrahman</creatorcontrib><creatorcontrib>Shawier, Abdullah</creatorcontrib><creatorcontrib>Abdel-Majeed, Mahmoud Said</creatorcontrib><creatorcontrib>Abdel-Khalik, Ayman Samy</creatorcontrib><creatorcontrib>Hamad, Mostafa S.</creatorcontrib><creatorcontrib>Hamdy, Ragi A.</creatorcontrib><creatorcontrib>Ahmed, Shehab</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Habib, Abdelrahman</au><au>Shawier, Abdullah</au><au>Abdel-Majeed, Mahmoud Said</au><au>Abdel-Khalik, Ayman Samy</au><au>Hamad, Mostafa S.</au><au>Hamdy, Ragi A.</au><au>Ahmed, Shehab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Current Control of Six-Phase IM-Based Nonisolated Integrated On-Board Battery Charger Under Different Winding Configurations</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>37</volume><issue>7</issue><spage>8345</spage><epage>8358</epage><pages>8345-8358</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Integrated on-board battery charging (IOBC) constitutes one of the future trends and the potential state-of-the-art technologies proposed for high-power chargers of electric vehicles. Model predictive control has recently been favored in different applications due to its simplicity in defining new control objectives and the straightforward handling of nonlinear constraints. In this article, the predictive current control (PCC) is applied to a six-phase induction-machine-based IOBC with three different winding configurations. From the grid perspective, this article introduces the required winding connections that maximize the charging grid current. Under PCC, different stator phases are controlled to draw balanced three-phase grid currents through controlling the machine nontorque-producing xy current components while ensuring zero average/ripple torque production. This article also discusses the effect of winding configuration on the mapping of the 64 available voltage vectors to the αβ , xy , and 0 + 0 − subspaces. The optimal subset voltage vectors of each configuration that achieve the highest possible dc-link utilization, zero torque production, minimum total harmonic distortion (THD), and unity power factor are then introduced. The feasibility to employ the concept of virtual voltage vectors to improve the current quality is also investigated. The three six-phase configurations are obtained from an externally reconfigured 1 kW 12-phase induction motor, which has been used to experimentally validate the theoretical findings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3149620</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0073-8745</orcidid><orcidid>https://orcid.org/0000-0003-1910-1242</orcidid><orcidid>https://orcid.org/0000-0001-5162-4954</orcidid><orcidid>https://orcid.org/0000-0002-0005-9622</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-07, Vol.37 (7), p.8345-8358 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_2643032946 |
source | IEEE |
subjects | Asymmetrical six-phase (A6P) Batteries Battery chargers Charging Configurations dual three-phase (D3P) Electric potential Electric vehicles Electronic equipment Harmonic distortion Induction motors integrated on-board battery chargers Permanent magnet motors Power factor Predictive control predictive current control (PCC) Propulsion Reluctance motors six-phase Stator windings Subspaces symmetrical six-phase (S6P) Torque virtual vectors Voltage Winding Windings |
title | Predictive Current Control of Six-Phase IM-Based Nonisolated Integrated On-Board Battery Charger Under Different Winding Configurations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Current%20Control%20of%20Six-Phase%20IM-Based%20Nonisolated%20Integrated%20On-Board%20Battery%20Charger%20Under%20Different%20Winding%20Configurations&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Habib,%20Abdelrahman&rft.date=2022-07-01&rft.volume=37&rft.issue=7&rft.spage=8345&rft.epage=8358&rft.pages=8345-8358&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3149620&rft_dat=%3Cproquest_RIE%3E2643032946%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2643032946&rft_id=info:pmid/&rft_ieee_id=9707642&rfr_iscdi=true |