Predicting the corrosion-wear response of an isolated austenite phase under anodic polarization

The wear-assisted corrosion response of a super-duplex stainless-steel from a single asperity contact was obtained using atomic force microscopy (AFM). The AFM tip applied increasing loads to an isolated surface region that was polarized to two different static potentials in the passive potential re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2022-04, Vol.494-495, p.204249, Article 204249
Hauptverfasser: Policastro, Steven A., Shockley, J. Michael, Strom, Matthew J., So, Christopher R., Horton, Derek J., Wahl, Kathryn J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 204249
container_title Wear
container_volume 494-495
creator Policastro, Steven A.
Shockley, J. Michael
Strom, Matthew J.
So, Christopher R.
Horton, Derek J.
Wahl, Kathryn J.
description The wear-assisted corrosion response of a super-duplex stainless-steel from a single asperity contact was obtained using atomic force microscopy (AFM). The AFM tip applied increasing loads to an isolated surface region that was polarized to two different static potentials in the passive potential region of the alloy in a 0.6 M NaCl solution. The wear-assisted corrosion response was modeled using an interfacial film growth model to obtain consistent kinetics parameters for the austenite phase response across applied loads and polarization potentials. The average response was then fit with an Arrhenius model that suggested that the stress fields from the single asperity contact induced damage in the protective oxide but also disrupted other oxide-formation processes at the oxide-electrolyte interface, thereby slowing repassivation, and allowing increasingly high corrosion currents as the stress fields increased. •AFM tip used to abrade isolated region of polarized super-duplex stainless steel.•Interfacial film growth model used to model electrochemical current response.•Arrhenius model used to provide insight into reactions affected by AFM tip contact.
doi_str_mv 10.1016/j.wear.2022.204249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2642939849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043164822000151</els_id><sourcerecordid>2642939849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-eb686853b71be91e4b6148150bc0dee308b3e8304b0560c49769779278d27bac3</originalsourceid><addsrcrecordid>eNp9kDlPAzEQhS0EEuH4A1SWqDf4Wh8SDYq4pEhQQG15vRPiKKwX2wuCX4-jUNPMFPO9NzMPoQtK5pRQebWZf4FLc0YYq0UwYQ7QjGrFG9YqdYhmhAjeUCn0MTrJeUMIoaaVM2SfE_TBlzC84bIG7GNKMYc4NDtDnCCPcciA4wq7AYcct65Aj92UCwyhAB7Xro6noYdUiVi98FihFH5cqTZn6GjlthnO__oper27fVk8NMun-8fFzbLxXLHSQCe11C3vFO3AUBCdpELTlnSe9ACc6I6D5kR0pJXEC6OkUcowpXumOuf5Kbrc-44pfkyQi93EKQ11pWVSMMONFqZSbE_5-mROsLJjCu8ufVtK7C5Iu7G7v-0uSLsPsoqu9yKo938GSDb7AIOvuSXwxfYx_Cf_Ba9kfLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642939849</pqid></control><display><type>article</type><title>Predicting the corrosion-wear response of an isolated austenite phase under anodic polarization</title><source>Access via ScienceDirect (Elsevier)</source><creator>Policastro, Steven A. ; Shockley, J. Michael ; Strom, Matthew J. ; So, Christopher R. ; Horton, Derek J. ; Wahl, Kathryn J.</creator><creatorcontrib>Policastro, Steven A. ; Shockley, J. Michael ; Strom, Matthew J. ; So, Christopher R. ; Horton, Derek J. ; Wahl, Kathryn J.</creatorcontrib><description>The wear-assisted corrosion response of a super-duplex stainless-steel from a single asperity contact was obtained using atomic force microscopy (AFM). The AFM tip applied increasing loads to an isolated surface region that was polarized to two different static potentials in the passive potential region of the alloy in a 0.6 M NaCl solution. The wear-assisted corrosion response was modeled using an interfacial film growth model to obtain consistent kinetics parameters for the austenite phase response across applied loads and polarization potentials. The average response was then fit with an Arrhenius model that suggested that the stress fields from the single asperity contact induced damage in the protective oxide but also disrupted other oxide-formation processes at the oxide-electrolyte interface, thereby slowing repassivation, and allowing increasingly high corrosion currents as the stress fields increased. •AFM tip used to abrade isolated region of polarized super-duplex stainless steel.•Interfacial film growth model used to model electrochemical current response.•Arrhenius model used to provide insight into reactions affected by AFM tip contact.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2022.204249</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AFM ; Anodic polarization ; Asperity ; Atomic force microscopy ; Austenite ; Contact stresses ; Corrosion ; Corrosion currents ; Corrosion-wear ; Corrosive wear ; Duplex stainless steels ; Electrochemistry ; Film growth ; Growth models ; Stress distribution ; Wear modeling</subject><ispartof>Wear, 2022-04, Vol.494-495, p.204249, Article 204249</ispartof><rights>2022</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-eb686853b71be91e4b6148150bc0dee308b3e8304b0560c49769779278d27bac3</citedby><cites>FETCH-LOGICAL-c372t-eb686853b71be91e4b6148150bc0dee308b3e8304b0560c49769779278d27bac3</cites><orcidid>0000-0002-9671-7107 ; 0000-0002-0096-6919 ; 0000-0003-3107-0899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wear.2022.204249$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Policastro, Steven A.</creatorcontrib><creatorcontrib>Shockley, J. Michael</creatorcontrib><creatorcontrib>Strom, Matthew J.</creatorcontrib><creatorcontrib>So, Christopher R.</creatorcontrib><creatorcontrib>Horton, Derek J.</creatorcontrib><creatorcontrib>Wahl, Kathryn J.</creatorcontrib><title>Predicting the corrosion-wear response of an isolated austenite phase under anodic polarization</title><title>Wear</title><description>The wear-assisted corrosion response of a super-duplex stainless-steel from a single asperity contact was obtained using atomic force microscopy (AFM). The AFM tip applied increasing loads to an isolated surface region that was polarized to two different static potentials in the passive potential region of the alloy in a 0.6 M NaCl solution. The wear-assisted corrosion response was modeled using an interfacial film growth model to obtain consistent kinetics parameters for the austenite phase response across applied loads and polarization potentials. The average response was then fit with an Arrhenius model that suggested that the stress fields from the single asperity contact induced damage in the protective oxide but also disrupted other oxide-formation processes at the oxide-electrolyte interface, thereby slowing repassivation, and allowing increasingly high corrosion currents as the stress fields increased. •AFM tip used to abrade isolated region of polarized super-duplex stainless steel.•Interfacial film growth model used to model electrochemical current response.•Arrhenius model used to provide insight into reactions affected by AFM tip contact.</description><subject>AFM</subject><subject>Anodic polarization</subject><subject>Asperity</subject><subject>Atomic force microscopy</subject><subject>Austenite</subject><subject>Contact stresses</subject><subject>Corrosion</subject><subject>Corrosion currents</subject><subject>Corrosion-wear</subject><subject>Corrosive wear</subject><subject>Duplex stainless steels</subject><subject>Electrochemistry</subject><subject>Film growth</subject><subject>Growth models</subject><subject>Stress distribution</subject><subject>Wear modeling</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDlPAzEQhS0EEuH4A1SWqDf4Wh8SDYq4pEhQQG15vRPiKKwX2wuCX4-jUNPMFPO9NzMPoQtK5pRQebWZf4FLc0YYq0UwYQ7QjGrFG9YqdYhmhAjeUCn0MTrJeUMIoaaVM2SfE_TBlzC84bIG7GNKMYc4NDtDnCCPcciA4wq7AYcct65Aj92UCwyhAB7Xro6noYdUiVi98FihFH5cqTZn6GjlthnO__oper27fVk8NMun-8fFzbLxXLHSQCe11C3vFO3AUBCdpELTlnSe9ACc6I6D5kR0pJXEC6OkUcowpXumOuf5Kbrc-44pfkyQi93EKQ11pWVSMMONFqZSbE_5-mROsLJjCu8ufVtK7C5Iu7G7v-0uSLsPsoqu9yKo938GSDb7AIOvuSXwxfYx_Cf_Ba9kfLA</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Policastro, Steven A.</creator><creator>Shockley, J. Michael</creator><creator>Strom, Matthew J.</creator><creator>So, Christopher R.</creator><creator>Horton, Derek J.</creator><creator>Wahl, Kathryn J.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9671-7107</orcidid><orcidid>https://orcid.org/0000-0002-0096-6919</orcidid><orcidid>https://orcid.org/0000-0003-3107-0899</orcidid></search><sort><creationdate>20220415</creationdate><title>Predicting the corrosion-wear response of an isolated austenite phase under anodic polarization</title><author>Policastro, Steven A. ; Shockley, J. Michael ; Strom, Matthew J. ; So, Christopher R. ; Horton, Derek J. ; Wahl, Kathryn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-eb686853b71be91e4b6148150bc0dee308b3e8304b0560c49769779278d27bac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AFM</topic><topic>Anodic polarization</topic><topic>Asperity</topic><topic>Atomic force microscopy</topic><topic>Austenite</topic><topic>Contact stresses</topic><topic>Corrosion</topic><topic>Corrosion currents</topic><topic>Corrosion-wear</topic><topic>Corrosive wear</topic><topic>Duplex stainless steels</topic><topic>Electrochemistry</topic><topic>Film growth</topic><topic>Growth models</topic><topic>Stress distribution</topic><topic>Wear modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Policastro, Steven A.</creatorcontrib><creatorcontrib>Shockley, J. Michael</creatorcontrib><creatorcontrib>Strom, Matthew J.</creatorcontrib><creatorcontrib>So, Christopher R.</creatorcontrib><creatorcontrib>Horton, Derek J.</creatorcontrib><creatorcontrib>Wahl, Kathryn J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Policastro, Steven A.</au><au>Shockley, J. Michael</au><au>Strom, Matthew J.</au><au>So, Christopher R.</au><au>Horton, Derek J.</au><au>Wahl, Kathryn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the corrosion-wear response of an isolated austenite phase under anodic polarization</atitle><jtitle>Wear</jtitle><date>2022-04-15</date><risdate>2022</risdate><volume>494-495</volume><spage>204249</spage><pages>204249-</pages><artnum>204249</artnum><issn>0043-1648</issn><eissn>1873-2577</eissn><abstract>The wear-assisted corrosion response of a super-duplex stainless-steel from a single asperity contact was obtained using atomic force microscopy (AFM). The AFM tip applied increasing loads to an isolated surface region that was polarized to two different static potentials in the passive potential region of the alloy in a 0.6 M NaCl solution. The wear-assisted corrosion response was modeled using an interfacial film growth model to obtain consistent kinetics parameters for the austenite phase response across applied loads and polarization potentials. The average response was then fit with an Arrhenius model that suggested that the stress fields from the single asperity contact induced damage in the protective oxide but also disrupted other oxide-formation processes at the oxide-electrolyte interface, thereby slowing repassivation, and allowing increasingly high corrosion currents as the stress fields increased. •AFM tip used to abrade isolated region of polarized super-duplex stainless steel.•Interfacial film growth model used to model electrochemical current response.•Arrhenius model used to provide insight into reactions affected by AFM tip contact.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2022.204249</doi><orcidid>https://orcid.org/0000-0002-9671-7107</orcidid><orcidid>https://orcid.org/0000-0002-0096-6919</orcidid><orcidid>https://orcid.org/0000-0003-3107-0899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1648
ispartof Wear, 2022-04, Vol.494-495, p.204249, Article 204249
issn 0043-1648
1873-2577
language eng
recordid cdi_proquest_journals_2642939849
source Access via ScienceDirect (Elsevier)
subjects AFM
Anodic polarization
Asperity
Atomic force microscopy
Austenite
Contact stresses
Corrosion
Corrosion currents
Corrosion-wear
Corrosive wear
Duplex stainless steels
Electrochemistry
Film growth
Growth models
Stress distribution
Wear modeling
title Predicting the corrosion-wear response of an isolated austenite phase under anodic polarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20corrosion-wear%20response%20of%20an%20isolated%20austenite%20phase%20under%20anodic%20polarization&rft.jtitle=Wear&rft.au=Policastro,%20Steven%20A.&rft.date=2022-04-15&rft.volume=494-495&rft.spage=204249&rft.pages=204249-&rft.artnum=204249&rft.issn=0043-1648&rft.eissn=1873-2577&rft_id=info:doi/10.1016/j.wear.2022.204249&rft_dat=%3Cproquest_cross%3E2642939849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642939849&rft_id=info:pmid/&rft_els_id=S0043164822000151&rfr_iscdi=true