Distributed agent-based deep reinforcement learning for large scale traffic signal control

Traffic signal control (TSC) is an established yet challenging engineering solution that alleviates traffic congestion by coordinating vehicles’ movements at road intersections. Theoretically, reinforcement learning (RL) is a promising method for adaptive TSC in complex urban traffic networks. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2022-04, Vol.241, p.108304, Article 108304
Hauptverfasser: Wu, Qiang, Wu, Jianqing, Shen, Jun, Du, Bo, Telikani, Akbar, Fahmideh, Mahdi, Liang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108304
container_title Knowledge-based systems
container_volume 241
creator Wu, Qiang
Wu, Jianqing
Shen, Jun
Du, Bo
Telikani, Akbar
Fahmideh, Mahdi
Liang, Chao
description Traffic signal control (TSC) is an established yet challenging engineering solution that alleviates traffic congestion by coordinating vehicles’ movements at road intersections. Theoretically, reinforcement learning (RL) is a promising method for adaptive TSC in complex urban traffic networks. However, current TSC systems still rely heavily on simplified rule-based methods in practice. In this paper, we propose: (1) two game theory-aided RL algorithms leveraging Nash Equilibrium and RL, namely Nash Advantage Actor–Critic (Nash-A2C) and Nash Asynchronous Advantage Actor–Critic (Nash-A3C); (2) a distributed computing Internet of Things (IoT) architecture for traffic simulation, which is more suitable for distributed TSC methods like the Nash-A3C deployment in its fog layer. We apply both methods in our computing architecture and obtain better performance than benchmark TSC methods by 22.1% and 9.7% reduction of congestion time and network delay, respectively.
doi_str_mv 10.1016/j.knosys.2022.108304
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2642939652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070512200106X</els_id><sourcerecordid>2642939652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-ff0738ac360ae09c6fb7c3185170ec9040ccacb0dc6e788352945150f80127753</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcLDEOWXtPJxckFB5SpW4wIWL5WzWkUOaFDtF6t_jKpw57Wp2ZnZ3GLsWsBIgittu9TWM4RBWEqSMUJlCdsIWolQyURlUp2wBVQ6Jglycs4sQOoDIFOWCfT64MHlX7ydquGlpmJLahNg3RDvuyQ129EjbOOA9GT-4oeUR4r3xLfGApic-eWOtQx5cO5ie4zhMfuwv2Zk1faCrv7pkH0-P7-uXZPP2_Lq-3yQoi2xKrAWVlgbTAgxBhYWtFaaizIUCwgoyQDRYQ4MFqbJMc1llucjBliCkUnm6ZDez786P33sKk-7GvY-HBB0XyCqtilxGVjaz0I8heLJ6593W-IMWoI8p6k7PKepjinpOMcruZhnFD34ceR3Q0YDUOE846WZ0_xv8AiFOfVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642939652</pqid></control><display><type>article</type><title>Distributed agent-based deep reinforcement learning for large scale traffic signal control</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wu, Qiang ; Wu, Jianqing ; Shen, Jun ; Du, Bo ; Telikani, Akbar ; Fahmideh, Mahdi ; Liang, Chao</creator><creatorcontrib>Wu, Qiang ; Wu, Jianqing ; Shen, Jun ; Du, Bo ; Telikani, Akbar ; Fahmideh, Mahdi ; Liang, Chao</creatorcontrib><description>Traffic signal control (TSC) is an established yet challenging engineering solution that alleviates traffic congestion by coordinating vehicles’ movements at road intersections. Theoretically, reinforcement learning (RL) is a promising method for adaptive TSC in complex urban traffic networks. However, current TSC systems still rely heavily on simplified rule-based methods in practice. In this paper, we propose: (1) two game theory-aided RL algorithms leveraging Nash Equilibrium and RL, namely Nash Advantage Actor–Critic (Nash-A2C) and Nash Asynchronous Advantage Actor–Critic (Nash-A3C); (2) a distributed computing Internet of Things (IoT) architecture for traffic simulation, which is more suitable for distributed TSC methods like the Nash-A3C deployment in its fog layer. We apply both methods in our computing architecture and obtain better performance than benchmark TSC methods by 22.1% and 9.7% reduction of congestion time and network delay, respectively.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2022.108304</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Computer architecture ; Computer networks ; Deep learning ; Distributed computing architecture ; Distributed processing ; Game theory ; Internet of Things ; Machine learning ; Nash Equilibrium ; Nash-A3C ; Reinforcement learning ; Traffic congestion ; Traffic control ; Traffic engineering ; Traffic signal control ; Traffic signals</subject><ispartof>Knowledge-based systems, 2022-04, Vol.241, p.108304, Article 108304</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-ff0738ac360ae09c6fb7c3185170ec9040ccacb0dc6e788352945150f80127753</citedby><cites>FETCH-LOGICAL-c264t-ff0738ac360ae09c6fb7c3185170ec9040ccacb0dc6e788352945150f80127753</cites><orcidid>0000-0002-9403-7140 ; 0000-0003-4467-4915 ; 0000-0003-0655-0479 ; 0000-0001-7198-4199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2022.108304$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Wu, Jianqing</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Telikani, Akbar</creatorcontrib><creatorcontrib>Fahmideh, Mahdi</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><title>Distributed agent-based deep reinforcement learning for large scale traffic signal control</title><title>Knowledge-based systems</title><description>Traffic signal control (TSC) is an established yet challenging engineering solution that alleviates traffic congestion by coordinating vehicles’ movements at road intersections. Theoretically, reinforcement learning (RL) is a promising method for adaptive TSC in complex urban traffic networks. However, current TSC systems still rely heavily on simplified rule-based methods in practice. In this paper, we propose: (1) two game theory-aided RL algorithms leveraging Nash Equilibrium and RL, namely Nash Advantage Actor–Critic (Nash-A2C) and Nash Asynchronous Advantage Actor–Critic (Nash-A3C); (2) a distributed computing Internet of Things (IoT) architecture for traffic simulation, which is more suitable for distributed TSC methods like the Nash-A3C deployment in its fog layer. We apply both methods in our computing architecture and obtain better performance than benchmark TSC methods by 22.1% and 9.7% reduction of congestion time and network delay, respectively.</description><subject>Algorithms</subject><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Deep learning</subject><subject>Distributed computing architecture</subject><subject>Distributed processing</subject><subject>Game theory</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Nash Equilibrium</subject><subject>Nash-A3C</subject><subject>Reinforcement learning</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Traffic signal control</subject><subject>Traffic signals</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcLDEOWXtPJxckFB5SpW4wIWL5WzWkUOaFDtF6t_jKpw57Wp2ZnZ3GLsWsBIgittu9TWM4RBWEqSMUJlCdsIWolQyURlUp2wBVQ6Jglycs4sQOoDIFOWCfT64MHlX7ydquGlpmJLahNg3RDvuyQ129EjbOOA9GT-4oeUR4r3xLfGApic-eWOtQx5cO5ie4zhMfuwv2Zk1faCrv7pkH0-P7-uXZPP2_Lq-3yQoi2xKrAWVlgbTAgxBhYWtFaaizIUCwgoyQDRYQ4MFqbJMc1llucjBliCkUnm6ZDez786P33sKk-7GvY-HBB0XyCqtilxGVjaz0I8heLJ6593W-IMWoI8p6k7PKepjinpOMcruZhnFD34ceR3Q0YDUOE846WZ0_xv8AiFOfVY</recordid><startdate>20220406</startdate><enddate>20220406</enddate><creator>Wu, Qiang</creator><creator>Wu, Jianqing</creator><creator>Shen, Jun</creator><creator>Du, Bo</creator><creator>Telikani, Akbar</creator><creator>Fahmideh, Mahdi</creator><creator>Liang, Chao</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9403-7140</orcidid><orcidid>https://orcid.org/0000-0003-4467-4915</orcidid><orcidid>https://orcid.org/0000-0003-0655-0479</orcidid><orcidid>https://orcid.org/0000-0001-7198-4199</orcidid></search><sort><creationdate>20220406</creationdate><title>Distributed agent-based deep reinforcement learning for large scale traffic signal control</title><author>Wu, Qiang ; Wu, Jianqing ; Shen, Jun ; Du, Bo ; Telikani, Akbar ; Fahmideh, Mahdi ; Liang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-ff0738ac360ae09c6fb7c3185170ec9040ccacb0dc6e788352945150f80127753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Deep learning</topic><topic>Distributed computing architecture</topic><topic>Distributed processing</topic><topic>Game theory</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Nash Equilibrium</topic><topic>Nash-A3C</topic><topic>Reinforcement learning</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Traffic signal control</topic><topic>Traffic signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Wu, Jianqing</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Telikani, Akbar</creatorcontrib><creatorcontrib>Fahmideh, Mahdi</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qiang</au><au>Wu, Jianqing</au><au>Shen, Jun</au><au>Du, Bo</au><au>Telikani, Akbar</au><au>Fahmideh, Mahdi</au><au>Liang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed agent-based deep reinforcement learning for large scale traffic signal control</atitle><jtitle>Knowledge-based systems</jtitle><date>2022-04-06</date><risdate>2022</risdate><volume>241</volume><spage>108304</spage><pages>108304-</pages><artnum>108304</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Traffic signal control (TSC) is an established yet challenging engineering solution that alleviates traffic congestion by coordinating vehicles’ movements at road intersections. Theoretically, reinforcement learning (RL) is a promising method for adaptive TSC in complex urban traffic networks. However, current TSC systems still rely heavily on simplified rule-based methods in practice. In this paper, we propose: (1) two game theory-aided RL algorithms leveraging Nash Equilibrium and RL, namely Nash Advantage Actor–Critic (Nash-A2C) and Nash Asynchronous Advantage Actor–Critic (Nash-A3C); (2) a distributed computing Internet of Things (IoT) architecture for traffic simulation, which is more suitable for distributed TSC methods like the Nash-A3C deployment in its fog layer. We apply both methods in our computing architecture and obtain better performance than benchmark TSC methods by 22.1% and 9.7% reduction of congestion time and network delay, respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2022.108304</doi><orcidid>https://orcid.org/0000-0002-9403-7140</orcidid><orcidid>https://orcid.org/0000-0003-4467-4915</orcidid><orcidid>https://orcid.org/0000-0003-0655-0479</orcidid><orcidid>https://orcid.org/0000-0001-7198-4199</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2022-04, Vol.241, p.108304, Article 108304
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2642939652
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Computer architecture
Computer networks
Deep learning
Distributed computing architecture
Distributed processing
Game theory
Internet of Things
Machine learning
Nash Equilibrium
Nash-A3C
Reinforcement learning
Traffic congestion
Traffic control
Traffic engineering
Traffic signal control
Traffic signals
title Distributed agent-based deep reinforcement learning for large scale traffic signal control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20agent-based%20deep%20reinforcement%20learning%20for%20large%20scale%20traffic%20signal%20control&rft.jtitle=Knowledge-based%20systems&rft.au=Wu,%20Qiang&rft.date=2022-04-06&rft.volume=241&rft.spage=108304&rft.pages=108304-&rft.artnum=108304&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2022.108304&rft_dat=%3Cproquest_cross%3E2642939652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642939652&rft_id=info:pmid/&rft_els_id=S095070512200106X&rfr_iscdi=true