Impact of Visual Distortion on Medical Images
The distortion is a common occurrence in the imaging area, especially medical imaging. The most common kinds of distortion in medical imaging are blurry, contrast- and noise-distorted images. The purpose of this study is to provide a four-step technique for determining if current Objective Image Qua...
Gespeichert in:
Veröffentlicht in: | IAENG international journal of computer science 2022-02, Vol.49 (1), p.36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | IAENG international journal of computer science |
container_volume | 49 |
creator | Sun, Yuhao Mogos, Gabriela |
description | The distortion is a common occurrence in the imaging area, especially medical imaging. The most common kinds of distortion in medical imaging are blurry, contrast- and noise-distorted images. The purpose of this study is to provide a four-step technique for determining if current Objective Image Quality Assessment (IQA) mathematical models function as well as human eyes. Throughout the investigation, the appropriate quality and source of X-ray CT scans were chosen. The results indicate that the Perception-Based Image Quality Evaluator (PIQE) is a moderately effective mathematical model of NoReference IQA (NR-IQA). However, in comparison to PIQE, both the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and the Naturalness Image Quality Evaluator (NIQE) performed poorly when used with X-ray CT scans. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2642939156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642939156</sourcerecordid><originalsourceid>FETCH-proquest_journals_26429391563</originalsourceid><addsrcrecordid>eNpjYuA0tDC01LU0MjJhgbLNTM0iOBi4iouzDAzMDQwMDDkZdD1zCxKTSxTy0xTCMotLE3MUXDKLS_KLSjLz8xSAyDc1JTMZKOqZm5ieWszDwJqWmFOcyguluRmU3VxDnD10C4ryC0tTi0vis_JLi_KAUvFGZiZGlsaWhqZmxsSpAgB4GjLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642939156</pqid></control><display><type>article</type><title>Impact of Visual Distortion on Medical Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Yuhao ; Mogos, Gabriela</creator><creatorcontrib>Sun, Yuhao ; Mogos, Gabriela</creatorcontrib><description>The distortion is a common occurrence in the imaging area, especially medical imaging. The most common kinds of distortion in medical imaging are blurry, contrast- and noise-distorted images. The purpose of this study is to provide a four-step technique for determining if current Objective Image Quality Assessment (IQA) mathematical models function as well as human eyes. Throughout the investigation, the appropriate quality and source of X-ray CT scans were chosen. The results indicate that the Perception-Based Image Quality Evaluator (PIQE) is a moderately effective mathematical model of NoReference IQA (NR-IQA). However, in comparison to PIQE, both the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and the Naturalness Image Quality Evaluator (NIQE) performed poorly when used with X-ray CT scans.</description><identifier>ISSN: 1819-656X</identifier><identifier>EISSN: 1819-9224</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Computed tomography ; Distortion ; Evaluation ; Eye (anatomy) ; Image contrast ; Image quality ; Mathematical analysis ; Mathematical models ; Medical imaging ; Quality assessment</subject><ispartof>IAENG international journal of computer science, 2022-02, Vol.49 (1), p.36</ispartof><rights>Copyright International Association of Engineers Feb 24, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Sun, Yuhao</creatorcontrib><creatorcontrib>Mogos, Gabriela</creatorcontrib><title>Impact of Visual Distortion on Medical Images</title><title>IAENG international journal of computer science</title><description>The distortion is a common occurrence in the imaging area, especially medical imaging. The most common kinds of distortion in medical imaging are blurry, contrast- and noise-distorted images. The purpose of this study is to provide a four-step technique for determining if current Objective Image Quality Assessment (IQA) mathematical models function as well as human eyes. Throughout the investigation, the appropriate quality and source of X-ray CT scans were chosen. The results indicate that the Perception-Based Image Quality Evaluator (PIQE) is a moderately effective mathematical model of NoReference IQA (NR-IQA). However, in comparison to PIQE, both the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and the Naturalness Image Quality Evaluator (NIQE) performed poorly when used with X-ray CT scans.</description><subject>Computed tomography</subject><subject>Distortion</subject><subject>Evaluation</subject><subject>Eye (anatomy)</subject><subject>Image contrast</subject><subject>Image quality</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Quality assessment</subject><issn>1819-656X</issn><issn>1819-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0tDC01LU0MjJhgbLNTM0iOBi4iouzDAzMDQwMDDkZdD1zCxKTSxTy0xTCMotLE3MUXDKLS_KLSjLz8xSAyDc1JTMZKOqZm5ieWszDwJqWmFOcyguluRmU3VxDnD10C4ryC0tTi0vis_JLi_KAUvFGZiZGlsaWhqZmxsSpAgB4GjLw</recordid><startdate>20220224</startdate><enddate>20220224</enddate><creator>Sun, Yuhao</creator><creator>Mogos, Gabriela</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220224</creationdate><title>Impact of Visual Distortion on Medical Images</title><author>Sun, Yuhao ; Mogos, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26429391563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computed tomography</topic><topic>Distortion</topic><topic>Evaluation</topic><topic>Eye (anatomy)</topic><topic>Image contrast</topic><topic>Image quality</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Quality assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yuhao</creatorcontrib><creatorcontrib>Mogos, Gabriela</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IAENG international journal of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yuhao</au><au>Mogos, Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Visual Distortion on Medical Images</atitle><jtitle>IAENG international journal of computer science</jtitle><date>2022-02-24</date><risdate>2022</risdate><volume>49</volume><issue>1</issue><spage>36</spage><pages>36-</pages><issn>1819-656X</issn><eissn>1819-9224</eissn><abstract>The distortion is a common occurrence in the imaging area, especially medical imaging. The most common kinds of distortion in medical imaging are blurry, contrast- and noise-distorted images. The purpose of this study is to provide a four-step technique for determining if current Objective Image Quality Assessment (IQA) mathematical models function as well as human eyes. Throughout the investigation, the appropriate quality and source of X-ray CT scans were chosen. The results indicate that the Perception-Based Image Quality Evaluator (PIQE) is a moderately effective mathematical model of NoReference IQA (NR-IQA). However, in comparison to PIQE, both the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and the Naturalness Image Quality Evaluator (NIQE) performed poorly when used with X-ray CT scans.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1819-656X |
ispartof | IAENG international journal of computer science, 2022-02, Vol.49 (1), p.36 |
issn | 1819-656X 1819-9224 |
language | eng |
recordid | cdi_proquest_journals_2642939156 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computed tomography Distortion Evaluation Eye (anatomy) Image contrast Image quality Mathematical analysis Mathematical models Medical imaging Quality assessment |
title | Impact of Visual Distortion on Medical Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Visual%20Distortion%20on%20Medical%20Images&rft.jtitle=IAENG%20international%20journal%20of%20computer%20science&rft.au=Sun,%20Yuhao&rft.date=2022-02-24&rft.volume=49&rft.issue=1&rft.spage=36&rft.pages=36-&rft.issn=1819-656X&rft.eissn=1819-9224&rft_id=info:doi/&rft_dat=%3Cproquest%3E2642939156%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642939156&rft_id=info:pmid/&rfr_iscdi=true |