Analysis of the Radiological, Mineralogical and Long-Term Sustainability of Several Commercial Aswan Granites Used as Building Materials

The widespread usage of granite in the building sector motivated us to conduct this research and examine the material’s sustainability in terms of the investigated characteristics. The purpose of this paper is to discuss the statistical analysis results for the mineralogical impact on radiological h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-03, Vol.14 (6), p.3553
Hauptverfasser: Zakaly, Hesham M. H., Awad, Hamdy A., Moghazy, Nasser M., Tekin, Huseyin O., Rabie, Abdalla, Fawzy, Mona M., El-Tohamy, Amira M., Ene, Antoaneta, Issa, Shams A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 3553
container_title Sustainability
container_volume 14
creator Zakaly, Hesham M. H.
Awad, Hamdy A.
Moghazy, Nasser M.
Tekin, Huseyin O.
Rabie, Abdalla
Fawzy, Mona M.
El-Tohamy, Amira M.
Ene, Antoaneta
Issa, Shams A. M.
description The widespread usage of granite in the building sector motivated us to conduct this research and examine the material’s sustainability in terms of the investigated characteristics. The purpose of this paper is to discuss the statistical analysis results for the mineralogical impact on radiological hazards indices, such as the equivalent of radium, absorbed gamma dose rate, annual effective dose, internal and external hazard indices, as well as the gamma-ray index, that were calculated to estimate the environmental risks associated with these granites used as building materials, to protect the public from excessive radioactivity exposure. We focused primarily on statistical significance at a 95% confidence level. We employed a non-parametric test (Kruskal–Wallis Test) rather than a one-way ANOVA, to determine the statistical significance of the samples due to the lack of homogeneity or normality among them. To assess the difference between the samples, we used the Mann–Whitney Test on each pair of samples. Additionally, Pearson correlation coefficients for all the mineralogical results are computed. The presence of K-rich minerals (Kefeldspars, biotite) and accessories such as uranophane, uranothorite, allanite, xenotime, fergusonite, aeschynite, zircon, cassiterite, apatite, and sphene, which are mostly found in granitic rocks, determines the level of natural radioactivity of the investigated granites. Most of the rock samples analyzed have indicators of radioactive dangers that are within the acceptable level range, indicating that they are suitable for use as building materials. On the other hand, some samples have environmental criteria that are higher than international standards, indicating that they are unsuitable for use as construction materials.
doi_str_mv 10.3390/su14063553
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2642650829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820483047</galeid><sourcerecordid>A820483047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-38c76dec139a5516e3f0ba2d066f8a98269b7ad41e92d0d8f29c8a81fff6ae883</originalsourceid><addsrcrecordid>eNpNkc9q3DAQxk1oISHNpU8g6KmlTvXH1krH7dImgQ2FbHIWs_bIVfBKqUZusm_Qx66XDbRz-b4ZfjOH-arqveCXSln-hSbRcK3aVp1UZ5IvRC14y9_850-rC6JHPpdSwgp9Vv1ZRhj3FIglz8pPZHfQhzSmIXQwfma3IWKG15ZB7Nk6xaG-x7xjm4kKhAjbMIayP-xv8PeBZqu022HuwmyX9AyRXWWIoSCxB8KeAbGvUxj7EAd2CwXzDNK76q2fBS9e9bx6-P7tfnVdr39c3ayW67qTrS21Mt1C99gJZaFthUbl-RZkz7X2BqyR2m4X0DcC7TzsjZe2M2CE914DGqPOqw_Hu085_ZqQintMU56fQE7qRuqWG2ln6uORGmBEF2KXYsGXMsBE5G42d25pJG-M4s1iZj8d2S4noozePeWwg7x3grtDMO5fMOov-NeAxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642650829</pqid></control><display><type>article</type><title>Analysis of the Radiological, Mineralogical and Long-Term Sustainability of Several Commercial Aswan Granites Used as Building Materials</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zakaly, Hesham M. H. ; Awad, Hamdy A. ; Moghazy, Nasser M. ; Tekin, Huseyin O. ; Rabie, Abdalla ; Fawzy, Mona M. ; El-Tohamy, Amira M. ; Ene, Antoaneta ; Issa, Shams A. M.</creator><creatorcontrib>Zakaly, Hesham M. H. ; Awad, Hamdy A. ; Moghazy, Nasser M. ; Tekin, Huseyin O. ; Rabie, Abdalla ; Fawzy, Mona M. ; El-Tohamy, Amira M. ; Ene, Antoaneta ; Issa, Shams A. M.</creatorcontrib><description>The widespread usage of granite in the building sector motivated us to conduct this research and examine the material’s sustainability in terms of the investigated characteristics. The purpose of this paper is to discuss the statistical analysis results for the mineralogical impact on radiological hazards indices, such as the equivalent of radium, absorbed gamma dose rate, annual effective dose, internal and external hazard indices, as well as the gamma-ray index, that were calculated to estimate the environmental risks associated with these granites used as building materials, to protect the public from excessive radioactivity exposure. We focused primarily on statistical significance at a 95% confidence level. We employed a non-parametric test (Kruskal–Wallis Test) rather than a one-way ANOVA, to determine the statistical significance of the samples due to the lack of homogeneity or normality among them. To assess the difference between the samples, we used the Mann–Whitney Test on each pair of samples. Additionally, Pearson correlation coefficients for all the mineralogical results are computed. The presence of K-rich minerals (Kefeldspars, biotite) and accessories such as uranophane, uranothorite, allanite, xenotime, fergusonite, aeschynite, zircon, cassiterite, apatite, and sphene, which are mostly found in granitic rocks, determines the level of natural radioactivity of the investigated granites. Most of the rock samples analyzed have indicators of radioactive dangers that are within the acceptable level range, indicating that they are suitable for use as building materials. On the other hand, some samples have environmental criteria that are higher than international standards, indicating that they are unsuitable for use as construction materials.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14063553</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Apatite ; Biotite ; Building ; Building materials ; Cassiterite ; Confidence intervals ; Construction materials ; Correlation coefficient ; Correlation coefficients ; Environmental risk ; Environmental sustainability ; Gamma rays ; Homogeneity ; International standardization ; International standards ; Kruskal-Wallis test ; Mann-Whitney U test ; Mineralogy ; Minerals ; Natural radioactivity ; Normality ; Potassium ; Protection and preservation ; Radiation ; Radioactivity ; Radium ; Rocks ; Samples ; Statistical analysis ; Statistical methods ; Statistical significance ; Statistics ; Student's t-test ; Sustainability ; Variance analysis ; Xenotime ; Zircon</subject><ispartof>Sustainability, 2022-03, Vol.14 (6), p.3553</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-38c76dec139a5516e3f0ba2d066f8a98269b7ad41e92d0d8f29c8a81fff6ae883</citedby><cites>FETCH-LOGICAL-c259t-38c76dec139a5516e3f0ba2d066f8a98269b7ad41e92d0d8f29c8a81fff6ae883</cites><orcidid>0000-0002-7645-9964 ; 0000-0002-6976-0767 ; 0000-0002-0997-3488 ; 0000-0002-8599-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zakaly, Hesham M. H.</creatorcontrib><creatorcontrib>Awad, Hamdy A.</creatorcontrib><creatorcontrib>Moghazy, Nasser M.</creatorcontrib><creatorcontrib>Tekin, Huseyin O.</creatorcontrib><creatorcontrib>Rabie, Abdalla</creatorcontrib><creatorcontrib>Fawzy, Mona M.</creatorcontrib><creatorcontrib>El-Tohamy, Amira M.</creatorcontrib><creatorcontrib>Ene, Antoaneta</creatorcontrib><creatorcontrib>Issa, Shams A. M.</creatorcontrib><title>Analysis of the Radiological, Mineralogical and Long-Term Sustainability of Several Commercial Aswan Granites Used as Building Materials</title><title>Sustainability</title><description>The widespread usage of granite in the building sector motivated us to conduct this research and examine the material’s sustainability in terms of the investigated characteristics. The purpose of this paper is to discuss the statistical analysis results for the mineralogical impact on radiological hazards indices, such as the equivalent of radium, absorbed gamma dose rate, annual effective dose, internal and external hazard indices, as well as the gamma-ray index, that were calculated to estimate the environmental risks associated with these granites used as building materials, to protect the public from excessive radioactivity exposure. We focused primarily on statistical significance at a 95% confidence level. We employed a non-parametric test (Kruskal–Wallis Test) rather than a one-way ANOVA, to determine the statistical significance of the samples due to the lack of homogeneity or normality among them. To assess the difference between the samples, we used the Mann–Whitney Test on each pair of samples. Additionally, Pearson correlation coefficients for all the mineralogical results are computed. The presence of K-rich minerals (Kefeldspars, biotite) and accessories such as uranophane, uranothorite, allanite, xenotime, fergusonite, aeschynite, zircon, cassiterite, apatite, and sphene, which are mostly found in granitic rocks, determines the level of natural radioactivity of the investigated granites. Most of the rock samples analyzed have indicators of radioactive dangers that are within the acceptable level range, indicating that they are suitable for use as building materials. On the other hand, some samples have environmental criteria that are higher than international standards, indicating that they are unsuitable for use as construction materials.</description><subject>Apatite</subject><subject>Biotite</subject><subject>Building</subject><subject>Building materials</subject><subject>Cassiterite</subject><subject>Confidence intervals</subject><subject>Construction materials</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Environmental risk</subject><subject>Environmental sustainability</subject><subject>Gamma rays</subject><subject>Homogeneity</subject><subject>International standardization</subject><subject>International standards</subject><subject>Kruskal-Wallis test</subject><subject>Mann-Whitney U test</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Natural radioactivity</subject><subject>Normality</subject><subject>Potassium</subject><subject>Protection and preservation</subject><subject>Radiation</subject><subject>Radioactivity</subject><subject>Radium</subject><subject>Rocks</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Student's t-test</subject><subject>Sustainability</subject><subject>Variance analysis</subject><subject>Xenotime</subject><subject>Zircon</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkc9q3DAQxk1oISHNpU8g6KmlTvXH1krH7dImgQ2FbHIWs_bIVfBKqUZusm_Qx66XDbRz-b4ZfjOH-arqveCXSln-hSbRcK3aVp1UZ5IvRC14y9_850-rC6JHPpdSwgp9Vv1ZRhj3FIglz8pPZHfQhzSmIXQwfma3IWKG15ZB7Nk6xaG-x7xjm4kKhAjbMIayP-xv8PeBZqu022HuwmyX9AyRXWWIoSCxB8KeAbGvUxj7EAd2CwXzDNK76q2fBS9e9bx6-P7tfnVdr39c3ayW67qTrS21Mt1C99gJZaFthUbl-RZkz7X2BqyR2m4X0DcC7TzsjZe2M2CE914DGqPOqw_Hu085_ZqQintMU56fQE7qRuqWG2ln6uORGmBEF2KXYsGXMsBE5G42d25pJG-M4s1iZj8d2S4noozePeWwg7x3grtDMO5fMOov-NeAxw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zakaly, Hesham M. H.</creator><creator>Awad, Hamdy A.</creator><creator>Moghazy, Nasser M.</creator><creator>Tekin, Huseyin O.</creator><creator>Rabie, Abdalla</creator><creator>Fawzy, Mona M.</creator><creator>El-Tohamy, Amira M.</creator><creator>Ene, Antoaneta</creator><creator>Issa, Shams A. M.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7645-9964</orcidid><orcidid>https://orcid.org/0000-0002-6976-0767</orcidid><orcidid>https://orcid.org/0000-0002-0997-3488</orcidid><orcidid>https://orcid.org/0000-0002-8599-4715</orcidid></search><sort><creationdate>20220301</creationdate><title>Analysis of the Radiological, Mineralogical and Long-Term Sustainability of Several Commercial Aswan Granites Used as Building Materials</title><author>Zakaly, Hesham M. H. ; Awad, Hamdy A. ; Moghazy, Nasser M. ; Tekin, Huseyin O. ; Rabie, Abdalla ; Fawzy, Mona M. ; El-Tohamy, Amira M. ; Ene, Antoaneta ; Issa, Shams A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-38c76dec139a5516e3f0ba2d066f8a98269b7ad41e92d0d8f29c8a81fff6ae883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apatite</topic><topic>Biotite</topic><topic>Building</topic><topic>Building materials</topic><topic>Cassiterite</topic><topic>Confidence intervals</topic><topic>Construction materials</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Environmental risk</topic><topic>Environmental sustainability</topic><topic>Gamma rays</topic><topic>Homogeneity</topic><topic>International standardization</topic><topic>International standards</topic><topic>Kruskal-Wallis test</topic><topic>Mann-Whitney U test</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Natural radioactivity</topic><topic>Normality</topic><topic>Potassium</topic><topic>Protection and preservation</topic><topic>Radiation</topic><topic>Radioactivity</topic><topic>Radium</topic><topic>Rocks</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Student's t-test</topic><topic>Sustainability</topic><topic>Variance analysis</topic><topic>Xenotime</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakaly, Hesham M. H.</creatorcontrib><creatorcontrib>Awad, Hamdy A.</creatorcontrib><creatorcontrib>Moghazy, Nasser M.</creatorcontrib><creatorcontrib>Tekin, Huseyin O.</creatorcontrib><creatorcontrib>Rabie, Abdalla</creatorcontrib><creatorcontrib>Fawzy, Mona M.</creatorcontrib><creatorcontrib>El-Tohamy, Amira M.</creatorcontrib><creatorcontrib>Ene, Antoaneta</creatorcontrib><creatorcontrib>Issa, Shams A. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakaly, Hesham M. H.</au><au>Awad, Hamdy A.</au><au>Moghazy, Nasser M.</au><au>Tekin, Huseyin O.</au><au>Rabie, Abdalla</au><au>Fawzy, Mona M.</au><au>El-Tohamy, Amira M.</au><au>Ene, Antoaneta</au><au>Issa, Shams A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Radiological, Mineralogical and Long-Term Sustainability of Several Commercial Aswan Granites Used as Building Materials</atitle><jtitle>Sustainability</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>3553</spage><pages>3553-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The widespread usage of granite in the building sector motivated us to conduct this research and examine the material’s sustainability in terms of the investigated characteristics. The purpose of this paper is to discuss the statistical analysis results for the mineralogical impact on radiological hazards indices, such as the equivalent of radium, absorbed gamma dose rate, annual effective dose, internal and external hazard indices, as well as the gamma-ray index, that were calculated to estimate the environmental risks associated with these granites used as building materials, to protect the public from excessive radioactivity exposure. We focused primarily on statistical significance at a 95% confidence level. We employed a non-parametric test (Kruskal–Wallis Test) rather than a one-way ANOVA, to determine the statistical significance of the samples due to the lack of homogeneity or normality among them. To assess the difference between the samples, we used the Mann–Whitney Test on each pair of samples. Additionally, Pearson correlation coefficients for all the mineralogical results are computed. The presence of K-rich minerals (Kefeldspars, biotite) and accessories such as uranophane, uranothorite, allanite, xenotime, fergusonite, aeschynite, zircon, cassiterite, apatite, and sphene, which are mostly found in granitic rocks, determines the level of natural radioactivity of the investigated granites. Most of the rock samples analyzed have indicators of radioactive dangers that are within the acceptable level range, indicating that they are suitable for use as building materials. On the other hand, some samples have environmental criteria that are higher than international standards, indicating that they are unsuitable for use as construction materials.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14063553</doi><orcidid>https://orcid.org/0000-0002-7645-9964</orcidid><orcidid>https://orcid.org/0000-0002-6976-0767</orcidid><orcidid>https://orcid.org/0000-0002-0997-3488</orcidid><orcidid>https://orcid.org/0000-0002-8599-4715</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-03, Vol.14 (6), p.3553
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2642650829
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Apatite
Biotite
Building
Building materials
Cassiterite
Confidence intervals
Construction materials
Correlation coefficient
Correlation coefficients
Environmental risk
Environmental sustainability
Gamma rays
Homogeneity
International standardization
International standards
Kruskal-Wallis test
Mann-Whitney U test
Mineralogy
Minerals
Natural radioactivity
Normality
Potassium
Protection and preservation
Radiation
Radioactivity
Radium
Rocks
Samples
Statistical analysis
Statistical methods
Statistical significance
Statistics
Student's t-test
Sustainability
Variance analysis
Xenotime
Zircon
title Analysis of the Radiological, Mineralogical and Long-Term Sustainability of Several Commercial Aswan Granites Used as Building Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Radiological,%20Mineralogical%20and%20Long-Term%20Sustainability%20of%20Several%20Commercial%20Aswan%20Granites%20Used%20as%20Building%20Materials&rft.jtitle=Sustainability&rft.au=Zakaly,%20Hesham%20M.%20H.&rft.date=2022-03-01&rft.volume=14&rft.issue=6&rft.spage=3553&rft.pages=3553-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14063553&rft_dat=%3Cgale_proqu%3EA820483047%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642650829&rft_id=info:pmid/&rft_galeid=A820483047&rfr_iscdi=true