The Microstrip Silicon Detector (MSD) data acquisition system architecture for the FOOT experiment

The FOOT (FragmentatiOn Of Target) multi-detector experiment aims at improving the accuracy of oncological hadrontherapy for tumor treatment. It studies the nuclear fragmentation due to the interactions of charged particle beams with patient tissues employing the inverse kinematic approach to boost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2022-03, Vol.17 (3), p.C03035
Hauptverfasser: Kanxheri, K., Barbanera, M., Ambrosi, G., Silvestre, G., Biondi, S., Ridolfi, R., Villa, M., Aisa, D., Caprai, M., Ionica, M., Placidi, P., Servoli, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page C03035
container_title Journal of instrumentation
container_volume 17
creator Kanxheri, K.
Barbanera, M.
Ambrosi, G.
Silvestre, G.
Biondi, S.
Ridolfi, R.
Villa, M.
Aisa, D.
Caprai, M.
Ionica, M.
Placidi, P.
Servoli, L.
description The FOOT (FragmentatiOn Of Target) multi-detector experiment aims at improving the accuracy of oncological hadrontherapy for tumor treatment. It studies the nuclear fragmentation due to the interactions of charged particle beams with patient tissues employing the inverse kinematic approach to boost the fragments in the laboratory reference system. Hence it is necessary a tracking system in a magnetic field to measure the momentum of the charged fragments. The Microstrip Silicon Detector (MSD) is part of the charged-ions-tracking magnetic spectrometer for the evaluation of the Linear Energy Transfer LET (d E /d x ) and the nuclear fragments momentum. Here we describe the MSD architecture and its data acquisition system whose task is to collect and digitize the detectors output, generating a data packet to be sent to the experiment’s central acquisition. This data acquisition system is designed and tested to withstand the trigger rate and detector’s throughput; it has a small size and is easily portable, a necessary feature for an experiment that will move among the available ion beam accelerators and proton therapy treatment rooms.
doi_str_mv 10.1088/1748-0221/17/03/C03035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2642415788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642415788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-42786de3a7899f6397d25d4fb6249cc8d2281ceebde2e81fa7b703ef7d38df743</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYsoOKd_QQK-qFCXJm2TPsrmVNjYw-ZzaJMblrGtXZKC-_emVHQPgk85cL97zs2JotsEPyWY81HCUh5jQpKgRpiOxphimp1Fg5_B-Ym-jK6c22CcFVmKB1G1WgOaG2lr561p0NJsjaz3aAIepK8tup8vJw9Ilb5EpTy0xhlvwtwdnYcdKq1cm45sLSAdcB_spovFCsFnA9bsYO-vowtdbh3cfL_D6GP6shq_xbPF6_v4eRZLirmPU8J4roCWjBeFzmnBFMlUqqucpIWUXBHCEwlQKSDAE12yimEKminKlWYpHUZ3vW9j60MLzotN3dp9iBQkT0maZIzzQOU91X3ZWdCiCWeW9igSLLo-RVeV6KoKSmAq-j7D4mO_aOrm13lj9iHoFBSN0gEmf8D_JHwBNtaF7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642415788</pqid></control><display><type>article</type><title>The Microstrip Silicon Detector (MSD) data acquisition system architecture for the FOOT experiment</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kanxheri, K. ; Barbanera, M. ; Ambrosi, G. ; Silvestre, G. ; Biondi, S. ; Ridolfi, R. ; Villa, M. ; Aisa, D. ; Caprai, M. ; Ionica, M. ; Placidi, P. ; Servoli, L.</creator><creatorcontrib>Kanxheri, K. ; Barbanera, M. ; Ambrosi, G. ; Silvestre, G. ; Biondi, S. ; Ridolfi, R. ; Villa, M. ; Aisa, D. ; Caprai, M. ; Ionica, M. ; Placidi, P. ; Servoli, L.</creatorcontrib><description>The FOOT (FragmentatiOn Of Target) multi-detector experiment aims at improving the accuracy of oncological hadrontherapy for tumor treatment. It studies the nuclear fragmentation due to the interactions of charged particle beams with patient tissues employing the inverse kinematic approach to boost the fragments in the laboratory reference system. Hence it is necessary a tracking system in a magnetic field to measure the momentum of the charged fragments. The Microstrip Silicon Detector (MSD) is part of the charged-ions-tracking magnetic spectrometer for the evaluation of the Linear Energy Transfer LET (d E /d x ) and the nuclear fragments momentum. Here we describe the MSD architecture and its data acquisition system whose task is to collect and digitize the detectors output, generating a data packet to be sent to the experiment’s central acquisition. This data acquisition system is designed and tested to withstand the trigger rate and detector’s throughput; it has a small size and is easily portable, a necessary feature for an experiment that will move among the available ion beam accelerators and proton therapy treatment rooms.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/17/03/C03035</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Charged particles ; Computer architecture ; Data acquisition circuits ; Data acquisition systems ; Experiments ; Fragmentation ; Fragments ; Front-end electronics for detector readout ; Ion beams ; Linear energy transfer (LET) ; Momentum ; Particle accelerators ; Particle beams ; Particle tracking detectors ; Proton beams ; Reference systems ; Sensors ; Si microstrip and pad detectors ; Silicon ; Tracking systems</subject><ispartof>Journal of instrumentation, 2022-03, Vol.17 (3), p.C03035</ispartof><rights>2022 IOP Publishing Ltd and Sissa Medialab</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-42786de3a7899f6397d25d4fb6249cc8d2281ceebde2e81fa7b703ef7d38df743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/17/03/C03035/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Kanxheri, K.</creatorcontrib><creatorcontrib>Barbanera, M.</creatorcontrib><creatorcontrib>Ambrosi, G.</creatorcontrib><creatorcontrib>Silvestre, G.</creatorcontrib><creatorcontrib>Biondi, S.</creatorcontrib><creatorcontrib>Ridolfi, R.</creatorcontrib><creatorcontrib>Villa, M.</creatorcontrib><creatorcontrib>Aisa, D.</creatorcontrib><creatorcontrib>Caprai, M.</creatorcontrib><creatorcontrib>Ionica, M.</creatorcontrib><creatorcontrib>Placidi, P.</creatorcontrib><creatorcontrib>Servoli, L.</creatorcontrib><title>The Microstrip Silicon Detector (MSD) data acquisition system architecture for the FOOT experiment</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>The FOOT (FragmentatiOn Of Target) multi-detector experiment aims at improving the accuracy of oncological hadrontherapy for tumor treatment. It studies the nuclear fragmentation due to the interactions of charged particle beams with patient tissues employing the inverse kinematic approach to boost the fragments in the laboratory reference system. Hence it is necessary a tracking system in a magnetic field to measure the momentum of the charged fragments. The Microstrip Silicon Detector (MSD) is part of the charged-ions-tracking magnetic spectrometer for the evaluation of the Linear Energy Transfer LET (d E /d x ) and the nuclear fragments momentum. Here we describe the MSD architecture and its data acquisition system whose task is to collect and digitize the detectors output, generating a data packet to be sent to the experiment’s central acquisition. This data acquisition system is designed and tested to withstand the trigger rate and detector’s throughput; it has a small size and is easily portable, a necessary feature for an experiment that will move among the available ion beam accelerators and proton therapy treatment rooms.</description><subject>Charged particles</subject><subject>Computer architecture</subject><subject>Data acquisition circuits</subject><subject>Data acquisition systems</subject><subject>Experiments</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>Front-end electronics for detector readout</subject><subject>Ion beams</subject><subject>Linear energy transfer (LET)</subject><subject>Momentum</subject><subject>Particle accelerators</subject><subject>Particle beams</subject><subject>Particle tracking detectors</subject><subject>Proton beams</subject><subject>Reference systems</subject><subject>Sensors</subject><subject>Si microstrip and pad detectors</subject><subject>Silicon</subject><subject>Tracking systems</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYsoOKd_QQK-qFCXJm2TPsrmVNjYw-ZzaJMblrGtXZKC-_emVHQPgk85cL97zs2JotsEPyWY81HCUh5jQpKgRpiOxphimp1Fg5_B-Ym-jK6c22CcFVmKB1G1WgOaG2lr561p0NJsjaz3aAIepK8tup8vJw9Ilb5EpTy0xhlvwtwdnYcdKq1cm45sLSAdcB_spovFCsFnA9bsYO-vowtdbh3cfL_D6GP6shq_xbPF6_v4eRZLirmPU8J4roCWjBeFzmnBFMlUqqucpIWUXBHCEwlQKSDAE12yimEKminKlWYpHUZ3vW9j60MLzotN3dp9iBQkT0maZIzzQOU91X3ZWdCiCWeW9igSLLo-RVeV6KoKSmAq-j7D4mO_aOrm13lj9iHoFBSN0gEmf8D_JHwBNtaF7w</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kanxheri, K.</creator><creator>Barbanera, M.</creator><creator>Ambrosi, G.</creator><creator>Silvestre, G.</creator><creator>Biondi, S.</creator><creator>Ridolfi, R.</creator><creator>Villa, M.</creator><creator>Aisa, D.</creator><creator>Caprai, M.</creator><creator>Ionica, M.</creator><creator>Placidi, P.</creator><creator>Servoli, L.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220301</creationdate><title>The Microstrip Silicon Detector (MSD) data acquisition system architecture for the FOOT experiment</title><author>Kanxheri, K. ; Barbanera, M. ; Ambrosi, G. ; Silvestre, G. ; Biondi, S. ; Ridolfi, R. ; Villa, M. ; Aisa, D. ; Caprai, M. ; Ionica, M. ; Placidi, P. ; Servoli, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-42786de3a7899f6397d25d4fb6249cc8d2281ceebde2e81fa7b703ef7d38df743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charged particles</topic><topic>Computer architecture</topic><topic>Data acquisition circuits</topic><topic>Data acquisition systems</topic><topic>Experiments</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>Front-end electronics for detector readout</topic><topic>Ion beams</topic><topic>Linear energy transfer (LET)</topic><topic>Momentum</topic><topic>Particle accelerators</topic><topic>Particle beams</topic><topic>Particle tracking detectors</topic><topic>Proton beams</topic><topic>Reference systems</topic><topic>Sensors</topic><topic>Si microstrip and pad detectors</topic><topic>Silicon</topic><topic>Tracking systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanxheri, K.</creatorcontrib><creatorcontrib>Barbanera, M.</creatorcontrib><creatorcontrib>Ambrosi, G.</creatorcontrib><creatorcontrib>Silvestre, G.</creatorcontrib><creatorcontrib>Biondi, S.</creatorcontrib><creatorcontrib>Ridolfi, R.</creatorcontrib><creatorcontrib>Villa, M.</creatorcontrib><creatorcontrib>Aisa, D.</creatorcontrib><creatorcontrib>Caprai, M.</creatorcontrib><creatorcontrib>Ionica, M.</creatorcontrib><creatorcontrib>Placidi, P.</creatorcontrib><creatorcontrib>Servoli, L.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanxheri, K.</au><au>Barbanera, M.</au><au>Ambrosi, G.</au><au>Silvestre, G.</au><au>Biondi, S.</au><au>Ridolfi, R.</au><au>Villa, M.</au><au>Aisa, D.</au><au>Caprai, M.</au><au>Ionica, M.</au><au>Placidi, P.</au><au>Servoli, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Microstrip Silicon Detector (MSD) data acquisition system architecture for the FOOT experiment</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>17</volume><issue>3</issue><spage>C03035</spage><pages>C03035-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>The FOOT (FragmentatiOn Of Target) multi-detector experiment aims at improving the accuracy of oncological hadrontherapy for tumor treatment. It studies the nuclear fragmentation due to the interactions of charged particle beams with patient tissues employing the inverse kinematic approach to boost the fragments in the laboratory reference system. Hence it is necessary a tracking system in a magnetic field to measure the momentum of the charged fragments. The Microstrip Silicon Detector (MSD) is part of the charged-ions-tracking magnetic spectrometer for the evaluation of the Linear Energy Transfer LET (d E /d x ) and the nuclear fragments momentum. Here we describe the MSD architecture and its data acquisition system whose task is to collect and digitize the detectors output, generating a data packet to be sent to the experiment’s central acquisition. This data acquisition system is designed and tested to withstand the trigger rate and detector’s throughput; it has a small size and is easily portable, a necessary feature for an experiment that will move among the available ion beam accelerators and proton therapy treatment rooms.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/17/03/C03035</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2022-03, Vol.17 (3), p.C03035
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2642415788
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Charged particles
Computer architecture
Data acquisition circuits
Data acquisition systems
Experiments
Fragmentation
Fragments
Front-end electronics for detector readout
Ion beams
Linear energy transfer (LET)
Momentum
Particle accelerators
Particle beams
Particle tracking detectors
Proton beams
Reference systems
Sensors
Si microstrip and pad detectors
Silicon
Tracking systems
title The Microstrip Silicon Detector (MSD) data acquisition system architecture for the FOOT experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Microstrip%20Silicon%20Detector%20(MSD)%20data%20acquisition%20system%20architecture%20for%20the%20FOOT%20experiment&rft.jtitle=Journal%20of%20instrumentation&rft.au=Kanxheri,%20K.&rft.date=2022-03-01&rft.volume=17&rft.issue=3&rft.spage=C03035&rft.pages=C03035-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/17/03/C03035&rft_dat=%3Cproquest_cross%3E2642415788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642415788&rft_id=info:pmid/&rfr_iscdi=true