High-performance surface optimized Mg-doped V2O5 (Mg@V2O5) cathode material via a surfactant-assisted hydrothermal technology for lithium-ion and lithium-sulfur batteries
Vanadium pentoxide (V 2 O 5 ) has attracted extensive attention due to its high specific capacity, low cost, high energy density, and rich sources. In this paper, Mg-doped V 2 O 5 (Mg@V 2 O 5 ) with excellent structure as energy storage material is synthesized via a surfactant-assisted hydrothermal...
Gespeichert in:
Veröffentlicht in: | Ionics 2022, Vol.28 (4), p.1511-1521 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1521 |
---|---|
container_issue | 4 |
container_start_page | 1511 |
container_title | Ionics |
container_volume | 28 |
creator | Li, Xinyue Su, Yujing Lang, Xiaoshi Li, Lan Yao, Chuangang Cai, Kedi |
description | Vanadium pentoxide (V
2
O
5
) has attracted extensive attention due to its high specific capacity, low cost, high energy density, and rich sources. In this paper, Mg-doped V
2
O
5
(Mg@V
2
O
5
) with excellent structure as energy storage material is synthesized via a surfactant-assisted hydrothermal technology. Physical characterization indicates that the Mg@V
2
O
5
synthesized with the assistance of sodium dodecyl sulfate (SDS-Mg@V
2
O
5
) has higher specific surface area (20.84 m
2
/g), uniformly smaller crystal size (2–40 nm), and rich pore structure. As the cathode active materials for lithium-ion batteries, the initial discharge specific capacities can achieve to 411.13 mAh g
−1
at 0.2 C and the capacity retention rate is 46.4% after 110 cycles. In addition, after the carbon coating, SDS-Mg@V
2
O
5
is used as sulfur-wrapping matrix material for lithium-sulfur batteries and the initial discharge specific capacities can achieve 1325.76, 1147.34, and 938.79 mAh g
−1
at 0.1, 0.2, and 0.5C, respectively. After 140 cycles, the capacity retention rate still remains at 86.7%. |
doi_str_mv | 10.1007/s11581-022-04470-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2642368122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642368122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a255f8cce9b09fda4517443580b01a8304153eae7e75f608d25469da4314372a3</originalsourceid><addsrcrecordid>eNp9Uc1u1DAYtBCVWAovwMkSFzgYPv_FyQ1UFYrUqpeWq_Vt4iSukjjYDtLySDxlvWwFN04zI83PYQh5w-EDBzAfE-e65gyEYKCUAcafkR2vqyJNBc_JDhplmAFlXpCXKT0AVBUXZkd-X_lhZKuLfYgzLq2jaYs9Fgxr9rP_5Tp6M7AurIV8F7eavrsZPh3Je9piHkPn6IzZRY8T_emR4lNBxiUzTMmnXJLjoYshj65sTDS7dlzCFIYDLat08nn028x8WCgu3V-dtqnfIt1jPta79Iqc9Tgl9_oJz8n9l8u7iyt2ffv128Xna9ZK3pRNoXVft61r9tD0HSrNjVJS17AHjrUExbV06Iwzuq-g7oRWVVN8kitpBMpz8vbUu8bwY3Mp24ewxaVMWlEpIauaC1Fc4uRqY0gput6u0c8YD5aDPX5iT5_Y8on984nlJSRPoVTMy-Div-r_pB4BEUiRJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642368122</pqid></control><display><type>article</type><title>High-performance surface optimized Mg-doped V2O5 (Mg@V2O5) cathode material via a surfactant-assisted hydrothermal technology for lithium-ion and lithium-sulfur batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Xinyue ; Su, Yujing ; Lang, Xiaoshi ; Li, Lan ; Yao, Chuangang ; Cai, Kedi</creator><creatorcontrib>Li, Xinyue ; Su, Yujing ; Lang, Xiaoshi ; Li, Lan ; Yao, Chuangang ; Cai, Kedi</creatorcontrib><description>Vanadium pentoxide (V
2
O
5
) has attracted extensive attention due to its high specific capacity, low cost, high energy density, and rich sources. In this paper, Mg-doped V
2
O
5
(Mg@V
2
O
5
) with excellent structure as energy storage material is synthesized via a surfactant-assisted hydrothermal technology. Physical characterization indicates that the Mg@V
2
O
5
synthesized with the assistance of sodium dodecyl sulfate (SDS-Mg@V
2
O
5
) has higher specific surface area (20.84 m
2
/g), uniformly smaller crystal size (2–40 nm), and rich pore structure. As the cathode active materials for lithium-ion batteries, the initial discharge specific capacities can achieve to 411.13 mAh g
−1
at 0.2 C and the capacity retention rate is 46.4% after 110 cycles. In addition, after the carbon coating, SDS-Mg@V
2
O
5
is used as sulfur-wrapping matrix material for lithium-sulfur batteries and the initial discharge specific capacities can achieve 1325.76, 1147.34, and 938.79 mAh g
−1
at 0.1, 0.2, and 0.5C, respectively. After 140 cycles, the capacity retention rate still remains at 86.7%.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-022-04470-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cathodes ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal structure ; Discharge ; Electrochemistry ; Electrode materials ; Energy Storage ; Flux density ; Lithium ; Lithium sulfur batteries ; Lithium-ion batteries ; Magnesium ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Sodium dodecyl sulfate ; Sulfur ; Surfactants ; Synthesis ; Vanadium pentoxide</subject><ispartof>Ionics, 2022, Vol.28 (4), p.1511-1521</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a255f8cce9b09fda4517443580b01a8304153eae7e75f608d25469da4314372a3</citedby><cites>FETCH-LOGICAL-c319t-a255f8cce9b09fda4517443580b01a8304153eae7e75f608d25469da4314372a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-022-04470-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-022-04470-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Li, Xinyue</creatorcontrib><creatorcontrib>Su, Yujing</creatorcontrib><creatorcontrib>Lang, Xiaoshi</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><creatorcontrib>Yao, Chuangang</creatorcontrib><creatorcontrib>Cai, Kedi</creatorcontrib><title>High-performance surface optimized Mg-doped V2O5 (Mg@V2O5) cathode material via a surfactant-assisted hydrothermal technology for lithium-ion and lithium-sulfur batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Vanadium pentoxide (V
2
O
5
) has attracted extensive attention due to its high specific capacity, low cost, high energy density, and rich sources. In this paper, Mg-doped V
2
O
5
(Mg@V
2
O
5
) with excellent structure as energy storage material is synthesized via a surfactant-assisted hydrothermal technology. Physical characterization indicates that the Mg@V
2
O
5
synthesized with the assistance of sodium dodecyl sulfate (SDS-Mg@V
2
O
5
) has higher specific surface area (20.84 m
2
/g), uniformly smaller crystal size (2–40 nm), and rich pore structure. As the cathode active materials for lithium-ion batteries, the initial discharge specific capacities can achieve to 411.13 mAh g
−1
at 0.2 C and the capacity retention rate is 46.4% after 110 cycles. In addition, after the carbon coating, SDS-Mg@V
2
O
5
is used as sulfur-wrapping matrix material for lithium-sulfur batteries and the initial discharge specific capacities can achieve 1325.76, 1147.34, and 938.79 mAh g
−1
at 0.1, 0.2, and 0.5C, respectively. After 140 cycles, the capacity retention rate still remains at 86.7%.</description><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Lithium-ion batteries</subject><subject>Magnesium</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Sodium dodecyl sulfate</subject><subject>Sulfur</subject><subject>Surfactants</subject><subject>Synthesis</subject><subject>Vanadium pentoxide</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9Uc1u1DAYtBCVWAovwMkSFzgYPv_FyQ1UFYrUqpeWq_Vt4iSukjjYDtLySDxlvWwFN04zI83PYQh5w-EDBzAfE-e65gyEYKCUAcafkR2vqyJNBc_JDhplmAFlXpCXKT0AVBUXZkd-X_lhZKuLfYgzLq2jaYs9Fgxr9rP_5Tp6M7AurIV8F7eavrsZPh3Je9piHkPn6IzZRY8T_emR4lNBxiUzTMmnXJLjoYshj65sTDS7dlzCFIYDLat08nn028x8WCgu3V-dtqnfIt1jPta79Iqc9Tgl9_oJz8n9l8u7iyt2ffv128Xna9ZK3pRNoXVft61r9tD0HSrNjVJS17AHjrUExbV06Iwzuq-g7oRWVVN8kitpBMpz8vbUu8bwY3Mp24ewxaVMWlEpIauaC1Fc4uRqY0gput6u0c8YD5aDPX5iT5_Y8on984nlJSRPoVTMy-Div-r_pB4BEUiRJA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Li, Xinyue</creator><creator>Su, Yujing</creator><creator>Lang, Xiaoshi</creator><creator>Li, Lan</creator><creator>Yao, Chuangang</creator><creator>Cai, Kedi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>High-performance surface optimized Mg-doped V2O5 (Mg@V2O5) cathode material via a surfactant-assisted hydrothermal technology for lithium-ion and lithium-sulfur batteries</title><author>Li, Xinyue ; Su, Yujing ; Lang, Xiaoshi ; Li, Lan ; Yao, Chuangang ; Cai, Kedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a255f8cce9b09fda4517443580b01a8304153eae7e75f608d25469da4314372a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Lithium-ion batteries</topic><topic>Magnesium</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Sodium dodecyl sulfate</topic><topic>Sulfur</topic><topic>Surfactants</topic><topic>Synthesis</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinyue</creatorcontrib><creatorcontrib>Su, Yujing</creatorcontrib><creatorcontrib>Lang, Xiaoshi</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><creatorcontrib>Yao, Chuangang</creatorcontrib><creatorcontrib>Cai, Kedi</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinyue</au><au>Su, Yujing</au><au>Lang, Xiaoshi</au><au>Li, Lan</au><au>Yao, Chuangang</au><au>Cai, Kedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance surface optimized Mg-doped V2O5 (Mg@V2O5) cathode material via a surfactant-assisted hydrothermal technology for lithium-ion and lithium-sulfur batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2022</date><risdate>2022</risdate><volume>28</volume><issue>4</issue><spage>1511</spage><epage>1521</epage><pages>1511-1521</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Vanadium pentoxide (V
2
O
5
) has attracted extensive attention due to its high specific capacity, low cost, high energy density, and rich sources. In this paper, Mg-doped V
2
O
5
(Mg@V
2
O
5
) with excellent structure as energy storage material is synthesized via a surfactant-assisted hydrothermal technology. Physical characterization indicates that the Mg@V
2
O
5
synthesized with the assistance of sodium dodecyl sulfate (SDS-Mg@V
2
O
5
) has higher specific surface area (20.84 m
2
/g), uniformly smaller crystal size (2–40 nm), and rich pore structure. As the cathode active materials for lithium-ion batteries, the initial discharge specific capacities can achieve to 411.13 mAh g
−1
at 0.2 C and the capacity retention rate is 46.4% after 110 cycles. In addition, after the carbon coating, SDS-Mg@V
2
O
5
is used as sulfur-wrapping matrix material for lithium-sulfur batteries and the initial discharge specific capacities can achieve 1325.76, 1147.34, and 938.79 mAh g
−1
at 0.1, 0.2, and 0.5C, respectively. After 140 cycles, the capacity retention rate still remains at 86.7%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-022-04470-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2022, Vol.28 (4), p.1511-1521 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2642368122 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cathodes Chemistry Chemistry and Materials Science Condensed Matter Physics Crystal structure Discharge Electrochemistry Electrode materials Energy Storage Flux density Lithium Lithium sulfur batteries Lithium-ion batteries Magnesium Optical and Electronic Materials Original Paper Rechargeable batteries Renewable and Green Energy Sodium dodecyl sulfate Sulfur Surfactants Synthesis Vanadium pentoxide |
title | High-performance surface optimized Mg-doped V2O5 (Mg@V2O5) cathode material via a surfactant-assisted hydrothermal technology for lithium-ion and lithium-sulfur batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20surface%20optimized%20Mg-doped%20V2O5%20(Mg@V2O5)%20cathode%20material%20via%20a%20surfactant-assisted%20hydrothermal%20technology%20for%20lithium-ion%20and%20lithium-sulfur%20batteries&rft.jtitle=Ionics&rft.au=Li,%20Xinyue&rft.date=2022&rft.volume=28&rft.issue=4&rft.spage=1511&rft.epage=1521&rft.pages=1511-1521&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-022-04470-1&rft_dat=%3Cproquest_cross%3E2642368122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642368122&rft_id=info:pmid/&rfr_iscdi=true |