Single‐Crystal LiNixMnyCo1−x−yO2 Cathodes for Extreme Fast Charging

Ni‐rich layered LiNixMnyCo1−x−yO2 (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium‐ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-03, Vol.18 (12), p.n/a
Hauptverfasser: Lu, Yanying, Zhu, Tianyu, McShane, Eric, McCloskey, Bryan D., Chen, Guoying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Lu, Yanying
Zhu, Tianyu
McShane, Eric
McCloskey, Bryan D.
Chen, Guoying
description Ni‐rich layered LiNixMnyCo1−x−yO2 (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium‐ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast‐charging electric vehicular (EV) batteries. Single‐crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain‐level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi0.8Co0.1Mn0.1O2 (NMC811) samples with different morphologies: Oct‐SC811 with predominating (012)‐family surface and Poly‐SC811 with predominating (104)‐family surface. Poly‐SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra‐high rate of 6 C. Through detailed X‐ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li+ diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast‐charging NMC‐type cathode materials. Synthetic approaches to produce Ni‐rich LiNixMnyCo1−x−yO2 single‐crystal samples with well‐defined morphologies and surfaces are reported. Polyhedron‐shaped LiNi0.8Co0.1Mn0.1O2 crystals with (104)‐family surface are found to deliver much better fast‐charging performance than the conventional polycrystalline counterpart. The improvement is attributed to enhanced chemical and structural stabilities, faster Li+ diffusion, suppressed side reactions with electrolyte and excellent particle cracking resistance.
doi_str_mv 10.1002/smll.202105833
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2642193900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642193900</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2333-2df75475428296a9304a74846498c624d7100ec73eb14e23749514035139190c3</originalsourceid><addsrcrecordid>eNo9kE1PAkEMhidGE3H16nkTz4vTdvZjjmYDSrLIAT1PRhhgycLizBLZG0ePxp_IL3EIhqRN26R52_dh7B54FzjHR7eqqi5yBB5nRBesAwlQlGQoL8898Gt249yScwIUaYcNxuV6XpnD_ie3rWt0FRbla7kbrtu8hsP3785nO8Iw182inhoXzmob9naNNSsT9rVrwnyh7dyL3LKrma6cufuvAXvv997yl6gYPQ_ypyLaIBFFOJ2lsfCB_rFES-JCpyITiZDZJEExTb0ZM0nJfIAwSKmQMQhOMZAEyScUsIeT7sbWn1vjGrWst3btTypMBIIk6d0FTJ62vsrKtGpjy5W2rQKujqzUkZU6s1LjYVGcJ_oDyFZfaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642193900</pqid></control><display><type>article</type><title>Single‐Crystal LiNixMnyCo1−x−yO2 Cathodes for Extreme Fast Charging</title><source>Wiley Online Library Journals</source><creator>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D. ; Chen, Guoying</creator><creatorcontrib>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D. ; Chen, Guoying</creatorcontrib><description>Ni‐rich layered LiNixMnyCo1−x−yO2 (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium‐ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast‐charging electric vehicular (EV) batteries. Single‐crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain‐level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi0.8Co0.1Mn0.1O2 (NMC811) samples with different morphologies: Oct‐SC811 with predominating (012)‐family surface and Poly‐SC811 with predominating (104)‐family surface. Poly‐SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra‐high rate of 6 C. Through detailed X‐ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li+ diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast‐charging NMC‐type cathode materials. Synthetic approaches to produce Ni‐rich LiNixMnyCo1−x−yO2 single‐crystal samples with well‐defined morphologies and surfaces are reported. Polyhedron‐shaped LiNi0.8Co0.1Mn0.1O2 crystals with (104)‐family surface are found to deliver much better fast‐charging performance than the conventional polycrystalline counterpart. The improvement is attributed to enhanced chemical and structural stabilities, faster Li+ diffusion, suppressed side reactions with electrolyte and excellent particle cracking resistance.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105833</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Charging ; Chemical reactions ; Diffusion rate ; Electric vehicles ; Electrode materials ; extreme fast charge ; Grain boundaries ; Lithium ; Lithium-ion batteries ; Nanotechnology ; Ni‐rich NMC ; Optimization ; Performance enhancement ; Single crystals ; single‐crystal cathodes ; Structural stability ; surface facet control</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3218-2609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202105833$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202105833$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lu, Yanying</creatorcontrib><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>McShane, Eric</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Chen, Guoying</creatorcontrib><title>Single‐Crystal LiNixMnyCo1−x−yO2 Cathodes for Extreme Fast Charging</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Ni‐rich layered LiNixMnyCo1−x−yO2 (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium‐ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast‐charging electric vehicular (EV) batteries. Single‐crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain‐level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi0.8Co0.1Mn0.1O2 (NMC811) samples with different morphologies: Oct‐SC811 with predominating (012)‐family surface and Poly‐SC811 with predominating (104)‐family surface. Poly‐SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra‐high rate of 6 C. Through detailed X‐ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li+ diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast‐charging NMC‐type cathode materials. Synthetic approaches to produce Ni‐rich LiNixMnyCo1−x−yO2 single‐crystal samples with well‐defined morphologies and surfaces are reported. Polyhedron‐shaped LiNi0.8Co0.1Mn0.1O2 crystals with (104)‐family surface are found to deliver much better fast‐charging performance than the conventional polycrystalline counterpart. The improvement is attributed to enhanced chemical and structural stabilities, faster Li+ diffusion, suppressed side reactions with electrolyte and excellent particle cracking resistance.</description><subject>Cathodes</subject><subject>Charging</subject><subject>Chemical reactions</subject><subject>Diffusion rate</subject><subject>Electric vehicles</subject><subject>Electrode materials</subject><subject>extreme fast charge</subject><subject>Grain boundaries</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanotechnology</subject><subject>Ni‐rich NMC</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Single crystals</subject><subject>single‐crystal cathodes</subject><subject>Structural stability</subject><subject>surface facet control</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAkEMhidGE3H16nkTz4vTdvZjjmYDSrLIAT1PRhhgycLizBLZG0ePxp_IL3EIhqRN26R52_dh7B54FzjHR7eqqi5yBB5nRBesAwlQlGQoL8898Gt249yScwIUaYcNxuV6XpnD_ie3rWt0FRbla7kbrtu8hsP3785nO8Iw182inhoXzmob9naNNSsT9rVrwnyh7dyL3LKrma6cufuvAXvv997yl6gYPQ_ypyLaIBFFOJ2lsfCB_rFES-JCpyITiZDZJEExTb0ZM0nJfIAwSKmQMQhOMZAEyScUsIeT7sbWn1vjGrWst3btTypMBIIk6d0FTJ62vsrKtGpjy5W2rQKujqzUkZU6s1LjYVGcJ_oDyFZfaQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Lu, Yanying</creator><creator>Zhu, Tianyu</creator><creator>McShane, Eric</creator><creator>McCloskey, Bryan D.</creator><creator>Chen, Guoying</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3218-2609</orcidid></search><sort><creationdate>20220301</creationdate><title>Single‐Crystal LiNixMnyCo1−x−yO2 Cathodes for Extreme Fast Charging</title><author>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D. ; Chen, Guoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2333-2df75475428296a9304a74846498c624d7100ec73eb14e23749514035139190c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Charging</topic><topic>Chemical reactions</topic><topic>Diffusion rate</topic><topic>Electric vehicles</topic><topic>Electrode materials</topic><topic>extreme fast charge</topic><topic>Grain boundaries</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanotechnology</topic><topic>Ni‐rich NMC</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Single crystals</topic><topic>single‐crystal cathodes</topic><topic>Structural stability</topic><topic>surface facet control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yanying</creatorcontrib><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>McShane, Eric</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Chen, Guoying</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yanying</au><au>Zhu, Tianyu</au><au>McShane, Eric</au><au>McCloskey, Bryan D.</au><au>Chen, Guoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Crystal LiNixMnyCo1−x−yO2 Cathodes for Extreme Fast Charging</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>18</volume><issue>12</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Ni‐rich layered LiNixMnyCo1−x−yO2 (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium‐ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast‐charging electric vehicular (EV) batteries. Single‐crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain‐level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi0.8Co0.1Mn0.1O2 (NMC811) samples with different morphologies: Oct‐SC811 with predominating (012)‐family surface and Poly‐SC811 with predominating (104)‐family surface. Poly‐SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra‐high rate of 6 C. Through detailed X‐ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li+ diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast‐charging NMC‐type cathode materials. Synthetic approaches to produce Ni‐rich LiNixMnyCo1−x−yO2 single‐crystal samples with well‐defined morphologies and surfaces are reported. Polyhedron‐shaped LiNi0.8Co0.1Mn0.1O2 crystals with (104)‐family surface are found to deliver much better fast‐charging performance than the conventional polycrystalline counterpart. The improvement is attributed to enhanced chemical and structural stabilities, faster Li+ diffusion, suppressed side reactions with electrolyte and excellent particle cracking resistance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202105833</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3218-2609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2642193900
source Wiley Online Library Journals
subjects Cathodes
Charging
Chemical reactions
Diffusion rate
Electric vehicles
Electrode materials
extreme fast charge
Grain boundaries
Lithium
Lithium-ion batteries
Nanotechnology
Ni‐rich NMC
Optimization
Performance enhancement
Single crystals
single‐crystal cathodes
Structural stability
surface facet control
title Single‐Crystal LiNixMnyCo1−x−yO2 Cathodes for Extreme Fast Charging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Crystal%20LiNixMnyCo1%E2%88%92x%E2%88%92yO2%20Cathodes%20for%20Extreme%20Fast%20Charging&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lu,%20Yanying&rft.date=2022-03-01&rft.volume=18&rft.issue=12&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105833&rft_dat=%3Cproquest_wiley%3E2642193900%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642193900&rft_id=info:pmid/&rfr_iscdi=true