Dense Residual Networks for Gaze Mapping on Indian Roads
In the recent past, greater accessibility to powerful computational resources has enabled progress in the field of Deep Learning and Computer Vision to grow by leaps and bounds. This in consequence has lent progress to the domain of Autonomous Driving and Navigation Systems. Most of the present rese...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kapoor, Chaitanya Kumar, Kshitij Vishnoi, Soumya Ramanathan, Sriram |
description | In the recent past, greater accessibility to powerful computational resources has enabled progress in the field of Deep Learning and Computer Vision to grow by leaps and bounds. This in consequence has lent progress to the domain of Autonomous Driving and Navigation Systems. Most of the present research work has been focused on driving scenarios in the European or American roads. Our paper draws special attention to the Indian driving context. To this effect, we propose a novel architecture, DR-Gaze, which is used to map the driver's gaze onto the road. We compare our results with previous works and state-of-the-art results on the DGAZE dataset. Our code will be made publicly available upon acceptance of our paper. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2642084190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642084190</sourcerecordid><originalsourceid>FETCH-proquest_journals_26420841903</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcEnNK05VCEotzkwpTcxR8EstKc8vyi5WSMsvUnBPrEpV8E0sKMjMS1fIz1PwzEvJTMxTCMpPTCnmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzMTIwMLE0NLA2PiVAEA8VA1TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642084190</pqid></control><display><type>article</type><title>Dense Residual Networks for Gaze Mapping on Indian Roads</title><source>Freely Accessible Journals</source><creator>Kapoor, Chaitanya ; Kumar, Kshitij ; Vishnoi, Soumya ; Ramanathan, Sriram</creator><creatorcontrib>Kapoor, Chaitanya ; Kumar, Kshitij ; Vishnoi, Soumya ; Ramanathan, Sriram</creatorcontrib><description>In the recent past, greater accessibility to powerful computational resources has enabled progress in the field of Deep Learning and Computer Vision to grow by leaps and bounds. This in consequence has lent progress to the domain of Autonomous Driving and Navigation Systems. Most of the present research work has been focused on driving scenarios in the European or American roads. Our paper draws special attention to the Indian driving context. To this effect, we propose a novel architecture, DR-Gaze, which is used to map the driver's gaze onto the road. We compare our results with previous works and state-of-the-art results on the DGAZE dataset. Our code will be made publicly available upon acceptance of our paper.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous navigation ; Computer vision ; Navigation systems ; Roads</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kapoor, Chaitanya</creatorcontrib><creatorcontrib>Kumar, Kshitij</creatorcontrib><creatorcontrib>Vishnoi, Soumya</creatorcontrib><creatorcontrib>Ramanathan, Sriram</creatorcontrib><title>Dense Residual Networks for Gaze Mapping on Indian Roads</title><title>arXiv.org</title><description>In the recent past, greater accessibility to powerful computational resources has enabled progress in the field of Deep Learning and Computer Vision to grow by leaps and bounds. This in consequence has lent progress to the domain of Autonomous Driving and Navigation Systems. Most of the present research work has been focused on driving scenarios in the European or American roads. Our paper draws special attention to the Indian driving context. To this effect, we propose a novel architecture, DR-Gaze, which is used to map the driver's gaze onto the road. We compare our results with previous works and state-of-the-art results on the DGAZE dataset. Our code will be made publicly available upon acceptance of our paper.</description><subject>Autonomous navigation</subject><subject>Computer vision</subject><subject>Navigation systems</subject><subject>Roads</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcEnNK05VCEotzkwpTcxR8EstKc8vyi5WSMsvUnBPrEpV8E0sKMjMS1fIz1PwzEvJTMxTCMpPTCnmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzMTIwMLE0NLA2PiVAEA8VA1TQ</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Kapoor, Chaitanya</creator><creator>Kumar, Kshitij</creator><creator>Vishnoi, Soumya</creator><creator>Ramanathan, Sriram</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220322</creationdate><title>Dense Residual Networks for Gaze Mapping on Indian Roads</title><author>Kapoor, Chaitanya ; Kumar, Kshitij ; Vishnoi, Soumya ; Ramanathan, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26420841903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous navigation</topic><topic>Computer vision</topic><topic>Navigation systems</topic><topic>Roads</topic><toplevel>online_resources</toplevel><creatorcontrib>Kapoor, Chaitanya</creatorcontrib><creatorcontrib>Kumar, Kshitij</creatorcontrib><creatorcontrib>Vishnoi, Soumya</creatorcontrib><creatorcontrib>Ramanathan, Sriram</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapoor, Chaitanya</au><au>Kumar, Kshitij</au><au>Vishnoi, Soumya</au><au>Ramanathan, Sriram</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dense Residual Networks for Gaze Mapping on Indian Roads</atitle><jtitle>arXiv.org</jtitle><date>2022-03-22</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In the recent past, greater accessibility to powerful computational resources has enabled progress in the field of Deep Learning and Computer Vision to grow by leaps and bounds. This in consequence has lent progress to the domain of Autonomous Driving and Navigation Systems. Most of the present research work has been focused on driving scenarios in the European or American roads. Our paper draws special attention to the Indian driving context. To this effect, we propose a novel architecture, DR-Gaze, which is used to map the driver's gaze onto the road. We compare our results with previous works and state-of-the-art results on the DGAZE dataset. Our code will be made publicly available upon acceptance of our paper.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2642084190 |
source | Freely Accessible Journals |
subjects | Autonomous navigation Computer vision Navigation systems Roads |
title | Dense Residual Networks for Gaze Mapping on Indian Roads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dense%20Residual%20Networks%20for%20Gaze%20Mapping%20on%20Indian%20Roads&rft.jtitle=arXiv.org&rft.au=Kapoor,%20Chaitanya&rft.date=2022-03-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2642084190%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642084190&rft_id=info:pmid/&rfr_iscdi=true |