Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral

This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.29451-29460
Hauptverfasser: Juric, Zeljko, Siljak, Harun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29460
container_issue
container_start_page 29451
container_title IEEE access
container_volume 10
creator Juric, Zeljko
Siljak, Harun
description This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying it to be approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant and applicable definition of integral known before in the mathematical literature which is readily applicable in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the formalization of engineering education by means of rigor. Main advantage of this approach is retaining the classical notation used in signal theory as well as its straightforward justification of key formulae in signal theory resulting from convolution and/or Fourier transform.
doi_str_mv 10.1109/ACCESS.2022.3158929
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641997035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733368</ieee_id><doaj_id>oai_doaj_org_article_b0b1053137d446868a4af33f5fac187d</doaj_id><sourcerecordid>2641997035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-64ad58e8018961c0dd78f6a92eaca5a4ef39c9dfcd7bb2d38ebd7909604ff82b3</originalsourceid><addsrcrecordid>eNpNUcFu3CAURFUrNdrmC3JB6nm3YGwMx9TaTVaKFKlJz-jZPFxWXthgO1J76a-XXUdRuTwYZubxGEJuONtwzvS326bZPj1tClYUG8ErpQv9gVwVXOq1qIT8-N_-M7kexwPLS2Woqq_I3x--jynOI92HCdMp4QSTj4FGR7eh9wEx-dDTXUzHeQCkLiY6_ULaxPAah_nChWAv2C7OyWOizwnCmIlH-h1GtDRTztd3GDDB4P9k6Nytz4cv5JODYcTrt7oiP3fb5-Z-_fB4t29uH9adqNS0liXYSqFiXGnJO2ZtrZwEXSB0UEGJTuhOW9fZum0LKxS2ttZMS1Y6p4pWrMh-8bURDuaU_BHSbxPBmwsQU28gTb4b0LSs5awSXNS2LKWSCkpwQrjKQcdVbbPX18XrlOLLjONkDnnwkJ9vCllyrWuWP3tFxMLqUhzHhO69K2fmHJxZgjPn4MxbcFl1s6g8Ir4rdC2EkEr8Awr6lpY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641997035</pqid></control><display><type>article</type><title>Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Juric, Zeljko ; Siljak, Harun</creator><creatorcontrib>Juric, Zeljko ; Siljak, Harun</creatorcontrib><description>This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying it to be approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant and applicable definition of integral known before in the mathematical literature which is readily applicable in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the formalization of engineering education by means of rigor. Main advantage of this approach is retaining the classical notation used in signal theory as well as its straightforward justification of key formulae in signal theory resulting from convolution and/or Fourier transform.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3158929</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analog signal theory ; Convolution ; Convolution integrals ; Engineering education ; Fourier transform ; Fourier transforms ; Functional analysis ; generalized integral ; Linear systems ; Schwartz distribution ; Tensors ; Topology</subject><ispartof>IEEE access, 2022, Vol.10, p.29451-29460</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-64ad58e8018961c0dd78f6a92eaca5a4ef39c9dfcd7bb2d38ebd7909604ff82b3</cites><orcidid>0000-0003-1371-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733368$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Juric, Zeljko</creatorcontrib><creatorcontrib>Siljak, Harun</creatorcontrib><title>Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying it to be approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant and applicable definition of integral known before in the mathematical literature which is readily applicable in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the formalization of engineering education by means of rigor. Main advantage of this approach is retaining the classical notation used in signal theory as well as its straightforward justification of key formulae in signal theory resulting from convolution and/or Fourier transform.</description><subject>Analog signal theory</subject><subject>Convolution</subject><subject>Convolution integrals</subject><subject>Engineering education</subject><subject>Fourier transform</subject><subject>Fourier transforms</subject><subject>Functional analysis</subject><subject>generalized integral</subject><subject>Linear systems</subject><subject>Schwartz distribution</subject><subject>Tensors</subject><subject>Topology</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu3CAURFUrNdrmC3JB6nm3YGwMx9TaTVaKFKlJz-jZPFxWXthgO1J76a-XXUdRuTwYZubxGEJuONtwzvS326bZPj1tClYUG8ErpQv9gVwVXOq1qIT8-N_-M7kexwPLS2Woqq_I3x--jynOI92HCdMp4QSTj4FGR7eh9wEx-dDTXUzHeQCkLiY6_ULaxPAah_nChWAv2C7OyWOizwnCmIlH-h1GtDRTztd3GDDB4P9k6Nytz4cv5JODYcTrt7oiP3fb5-Z-_fB4t29uH9adqNS0liXYSqFiXGnJO2ZtrZwEXSB0UEGJTuhOW9fZum0LKxS2ttZMS1Y6p4pWrMh-8bURDuaU_BHSbxPBmwsQU28gTb4b0LSs5awSXNS2LKWSCkpwQrjKQcdVbbPX18XrlOLLjONkDnnwkJ9vCllyrWuWP3tFxMLqUhzHhO69K2fmHJxZgjPn4MxbcFl1s6g8Ir4rdC2EkEr8Awr6lpY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Juric, Zeljko</creator><creator>Siljak, Harun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1371-2683</orcidid></search><sort><creationdate>2022</creationdate><title>Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral</title><author>Juric, Zeljko ; Siljak, Harun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-64ad58e8018961c0dd78f6a92eaca5a4ef39c9dfcd7bb2d38ebd7909604ff82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analog signal theory</topic><topic>Convolution</topic><topic>Convolution integrals</topic><topic>Engineering education</topic><topic>Fourier transform</topic><topic>Fourier transforms</topic><topic>Functional analysis</topic><topic>generalized integral</topic><topic>Linear systems</topic><topic>Schwartz distribution</topic><topic>Tensors</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juric, Zeljko</creatorcontrib><creatorcontrib>Siljak, Harun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juric, Zeljko</au><au>Siljak, Harun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>29451</spage><epage>29460</epage><pages>29451-29460</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying it to be approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant and applicable definition of integral known before in the mathematical literature which is readily applicable in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the formalization of engineering education by means of rigor. Main advantage of this approach is retaining the classical notation used in signal theory as well as its straightforward justification of key formulae in signal theory resulting from convolution and/or Fourier transform.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3158929</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1371-2683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.29451-29460
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2641997035
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IEEE Xplore Open Access Journals
subjects Analog signal theory
Convolution
Convolution integrals
Engineering education
Fourier transform
Fourier transforms
Functional analysis
generalized integral
Linear systems
Schwartz distribution
Tensors
Topology
title Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20Interpretation%20of%20Engineering%20Formulae%20for%20the%20Convolution%20and%20the%20Fourier%20Transform%20Based%20on%20the%20Generalized%20Integral&rft.jtitle=IEEE%20access&rft.au=Juric,%20Zeljko&rft.date=2022&rft.volume=10&rft.spage=29451&rft.epage=29460&rft.pages=29451-29460&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3158929&rft_dat=%3Cproquest_cross%3E2641997035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641997035&rft_id=info:pmid/&rft_ieee_id=9733368&rft_doaj_id=oai_doaj_org_article_b0b1053137d446868a4af33f5fac187d&rfr_iscdi=true