Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral
This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.29451-29460 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29460 |
---|---|
container_issue | |
container_start_page | 29451 |
container_title | IEEE access |
container_volume | 10 |
creator | Juric, Zeljko Siljak, Harun |
description | This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying it to be approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant and applicable definition of integral known before in the mathematical literature which is readily applicable in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the formalization of engineering education by means of rigor. Main advantage of this approach is retaining the classical notation used in signal theory as well as its straightforward justification of key formulae in signal theory resulting from convolution and/or Fourier transform. |
doi_str_mv | 10.1109/ACCESS.2022.3158929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2641997035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733368</ieee_id><doaj_id>oai_doaj_org_article_b0b1053137d446868a4af33f5fac187d</doaj_id><sourcerecordid>2641997035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-64ad58e8018961c0dd78f6a92eaca5a4ef39c9dfcd7bb2d38ebd7909604ff82b3</originalsourceid><addsrcrecordid>eNpNUcFu3CAURFUrNdrmC3JB6nm3YGwMx9TaTVaKFKlJz-jZPFxWXthgO1J76a-XXUdRuTwYZubxGEJuONtwzvS326bZPj1tClYUG8ErpQv9gVwVXOq1qIT8-N_-M7kexwPLS2Woqq_I3x--jynOI92HCdMp4QSTj4FGR7eh9wEx-dDTXUzHeQCkLiY6_ULaxPAah_nChWAv2C7OyWOizwnCmIlH-h1GtDRTztd3GDDB4P9k6Nytz4cv5JODYcTrt7oiP3fb5-Z-_fB4t29uH9adqNS0liXYSqFiXGnJO2ZtrZwEXSB0UEGJTuhOW9fZum0LKxS2ttZMS1Y6p4pWrMh-8bURDuaU_BHSbxPBmwsQU28gTb4b0LSs5awSXNS2LKWSCkpwQrjKQcdVbbPX18XrlOLLjONkDnnwkJ9vCllyrWuWP3tFxMLqUhzHhO69K2fmHJxZgjPn4MxbcFl1s6g8Ir4rdC2EkEr8Awr6lpY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641997035</pqid></control><display><type>article</type><title>Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Juric, Zeljko ; Siljak, Harun</creator><creatorcontrib>Juric, Zeljko ; Siljak, Harun</creatorcontrib><description>This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying it to be approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant and applicable definition of integral known before in the mathematical literature which is readily applicable in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the formalization of engineering education by means of rigor. Main advantage of this approach is retaining the classical notation used in signal theory as well as its straightforward justification of key formulae in signal theory resulting from convolution and/or Fourier transform.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3158929</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analog signal theory ; Convolution ; Convolution integrals ; Engineering education ; Fourier transform ; Fourier transforms ; Functional analysis ; generalized integral ; Linear systems ; Schwartz distribution ; Tensors ; Topology</subject><ispartof>IEEE access, 2022, Vol.10, p.29451-29460</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-64ad58e8018961c0dd78f6a92eaca5a4ef39c9dfcd7bb2d38ebd7909604ff82b3</cites><orcidid>0000-0003-1371-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733368$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Juric, Zeljko</creatorcontrib><creatorcontrib>Siljak, Harun</creatorcontrib><title>Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying it to be approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant and applicable definition of integral known before in the mathematical literature which is readily applicable in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the formalization of engineering education by means of rigor. Main advantage of this approach is retaining the classical notation used in signal theory as well as its straightforward justification of key formulae in signal theory resulting from convolution and/or Fourier transform.</description><subject>Analog signal theory</subject><subject>Convolution</subject><subject>Convolution integrals</subject><subject>Engineering education</subject><subject>Fourier transform</subject><subject>Fourier transforms</subject><subject>Functional analysis</subject><subject>generalized integral</subject><subject>Linear systems</subject><subject>Schwartz distribution</subject><subject>Tensors</subject><subject>Topology</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu3CAURFUrNdrmC3JB6nm3YGwMx9TaTVaKFKlJz-jZPFxWXthgO1J76a-XXUdRuTwYZubxGEJuONtwzvS326bZPj1tClYUG8ErpQv9gVwVXOq1qIT8-N_-M7kexwPLS2Woqq_I3x--jynOI92HCdMp4QSTj4FGR7eh9wEx-dDTXUzHeQCkLiY6_ULaxPAah_nChWAv2C7OyWOizwnCmIlH-h1GtDRTztd3GDDB4P9k6Nytz4cv5JODYcTrt7oiP3fb5-Z-_fB4t29uH9adqNS0liXYSqFiXGnJO2ZtrZwEXSB0UEGJTuhOW9fZum0LKxS2ttZMS1Y6p4pWrMh-8bURDuaU_BHSbxPBmwsQU28gTb4b0LSs5awSXNS2LKWSCkpwQrjKQcdVbbPX18XrlOLLjONkDnnwkJ9vCllyrWuWP3tFxMLqUhzHhO69K2fmHJxZgjPn4MxbcFl1s6g8Ir4rdC2EkEr8Awr6lpY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Juric, Zeljko</creator><creator>Siljak, Harun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1371-2683</orcidid></search><sort><creationdate>2022</creationdate><title>Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral</title><author>Juric, Zeljko ; Siljak, Harun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-64ad58e8018961c0dd78f6a92eaca5a4ef39c9dfcd7bb2d38ebd7909604ff82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analog signal theory</topic><topic>Convolution</topic><topic>Convolution integrals</topic><topic>Engineering education</topic><topic>Fourier transform</topic><topic>Fourier transforms</topic><topic>Functional analysis</topic><topic>generalized integral</topic><topic>Linear systems</topic><topic>Schwartz distribution</topic><topic>Tensors</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juric, Zeljko</creatorcontrib><creatorcontrib>Siljak, Harun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juric, Zeljko</au><au>Siljak, Harun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>29451</spage><epage>29460</epage><pages>29451-29460</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper aims at providing a framework suitable for justification of classical convolution integral and Fourier transform in many cases not covered by the usual definition of integral used for signal theory applications. Generalized functions approach from functional analysis is used, simplifying it to be approachable for engineers while retaining the rigor. The generalized functions approach results in an elegant and applicable definition of integral known before in the mathematical literature which is readily applicable in signal theory, justifying formulae usually seen as dubious and criticised for lack of rigor. The study offers a rigorous, simple and understandable definition of integral for use in analog signal theory, helping the formalization of engineering education by means of rigor. Main advantage of this approach is retaining the classical notation used in signal theory as well as its straightforward justification of key formulae in signal theory resulting from convolution and/or Fourier transform.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3158929</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1371-2683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.29451-29460 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2641997035 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IEEE Xplore Open Access Journals |
subjects | Analog signal theory Convolution Convolution integrals Engineering education Fourier transform Fourier transforms Functional analysis generalized integral Linear systems Schwartz distribution Tensors Topology |
title | Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20Interpretation%20of%20Engineering%20Formulae%20for%20the%20Convolution%20and%20the%20Fourier%20Transform%20Based%20on%20the%20Generalized%20Integral&rft.jtitle=IEEE%20access&rft.au=Juric,%20Zeljko&rft.date=2022&rft.volume=10&rft.spage=29451&rft.epage=29460&rft.pages=29451-29460&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3158929&rft_dat=%3Cproquest_cross%3E2641997035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641997035&rft_id=info:pmid/&rft_ieee_id=9733368&rft_doaj_id=oai_doaj_org_article_b0b1053137d446868a4af33f5fac187d&rfr_iscdi=true |